A Fluorous Capping Strategy for Solid-Phase Peptide Synthesis
SHORT COMMUNICATION
[8] D. V. Filippov, D. J. van Zoelen, S. P. Oldfield, G. A.
van der Marel, H. S. Overkleeft, J. W. Drijfhout, J. H.
van Boom, Tetrahedron Lett. 2002, 43, 7809.
[9] P. C. de Visser, M. van Helden, D. V. Filippov, G. A.
van der Marel, J. W. Drijfhout, J. H. van Boom, D. Noort,
H. S. Overkleeft, Tetrahedron Lett. 2003, 44, 9013.
[10] W. H. Pearson, D. A. Berry, P. Stoy, K. Y. Jung, A. D. Sercel,
J. Org. Chem. 2005, 70, 7114.
[11] E. R. Palmacci, M. C. Hewitt, P. H. Seeberger, Angew. Chem.
Int. Ed. 2001, 40, 4433.
[12] L. Manzoni, Chem. Commun. 2003, 2930.
[13] T. Miura, K. T. Goto, D. Hosaka, T. Inazu, Angew. Chem. Int.
Ed. 2003, 42, 2047.
[14] T. Miura, S. Tsujino, A. Satoh, K. Goto, M. Mizuno, M. Nog-
uchi, T. Kajimoto, M. Node, Y. Murakami, N. Imai, T. Inazu,
Tetrahedron 2005, 61, 6518.
[15] K. Goto, T. Miura, M. Mizuno, H. Takaki, N. Imai, Y. Murak-
ami, T. Inazu, Synlett 2004, 2221.
[16] B. Bilgiçer, K. Kumar, Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
15324.
Figure 4. Photograph of precipitate resulting from centrifugation
of a 1% AcOH solution of crude peptide P3 synthesized manually
using capping reagent 2. The supernatant contains largely the full-
length peptide. Similar treatment of the Ac2O capped crude peptide
mixture does not result in any observable precipitate.
[17] B. Bilgiçer, X. Xing, K. Kumar, J. Am. Chem. Soc. 2001, 123,
11815.
[18] B. Bilgiçer, A. Fichera, K. Kumar, J. Am. Chem. Soc. 2001,
123, 4393.
containing methionine as the alkylation reaction is circum-
vented by the use of methionine sulfoxide during the course
of the synthesis. For instance, when the pentapeptide
Ac–NH–Phe–Ala–Met(O)–Ala–Phe–CO–NH–Resin was
treated with the reagent 1 under typical capping conditions,
it did not react (see supporting information). Methods for
conversion of Met(sulfoxide) to methionine are well estab-
lished,[47] and with the inclusion of this additional step, all
20 amino acids are compatible with our capping method.
In summary, these results demonstrate robust and ef-
ficient fluorous tagging of deletion products that accumu-
late during automated and manual Fmoc peptide synthesis.
The purification is achieved in a facile manner by simple
centrifugation or by fluorous flash chromatography for
longer products. We envision that these reagents will find
broad use in solid-phase peptide and combinatorial chemis-
try where terminal amines are coupled to reaction partners.
[19] B. Bilgiçer, K. Kumar, Tetrahedron 2002, 58, 4105.
[20] B. Bilgiçer, K. Kumar, J. Chem. Educ. 2003, 80, 1275.
[21] N. C. Yoder, K. Kumar, Chem. Soc. Rev. 2002, 31, 335.
[22] Y. Tang, D. A. Tirrell, J. Am. Chem. Soc. 2001, 123, 11089.
[23] Y. Tang, G. Ghirlanda, W. A. Petka, T. Nakajima, W. F. De-
Grado, D. A. Tirrell, Angew. Chem. Int. Ed. 2001, 40, 1494.
[24] K. H. Lee, H. Y. Lee, M. M. Slutsky, J. T. Anderson, E. N. G.
Marsh, Biochemistry 2004, 43, 16277.
[25] N. Budisa, O. Pipitone, I. Siwanowicz, M. Rubini, P. P. Pal,
T. A. Holak, M. L. Gelmi, Chem. Biodiversity 2004, 1, 1465.
[26] P. Wang, Y. Tang, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125,
6900.
[27] M. Schuler, D. O’Hagan, A. M. Z. Slawin, Chem. Commun.
2005, 4324.
[28] K. E. Myers, K. Kumar, J. Am. Chem. Soc. 2000, 122, 12025.
[29] L. V. Dinh, J. A. Gladysz, Angew. Chem. Int. Ed. 2005, 44,
4095.
[30] J. A. Gladysz, D. P. Curran, Tetrahedron 2002, 58, 3823.
[31] J. A. Gladysz, Chem. Rev. 2002, 102, 3215.
[32] M. Wende, J. A. Gladysz, J. Am. Chem. Soc. 2003, 125, 5861.
[33] E. L. Teo, G. K. Chuah, A. R. J. Huguet, S. Jaenicke, G. Pande,
Y. Z. Zhu, Catal. Today 2004, 97, 263.
[34] P. Beier, A. M. Z. Slawin, D. O’Hagan, Tetrahedron: Asym-
metry 2004, 15, 2447.
Supporting Information Available (see footnote on the first page of
this article): Summary of mass spectroscopic data (LC ESI-MS) of
crude peptide mixtures and capped fragments; synthesis of reagent
2 and accompanying analytical data.
[35] W. Zhang, Tetrahedron 2003, 59, 4475.
[36] D. Evanko, Nat. Methods 2005, 2, 406.
Acknowledgments
[37] S. M. Leeder, M. R. Gagne, J. Am. Chem. Soc. 2003, 125, 9048.
[38] S. M. Swaleh, B. Hungerhoff, H. Sonnenschein, F. Theil, Tetra-
hedron 2002, 58, 4085.
[39] P. Beier, D. O’Hagan, Chem. Commun. 2002, 1680.
[40] B. Hungerhoff, H. Sonnenschein, F. Theil, Angew. Chem. Int.
Ed. 2001, 40, 2492.
We thank Laila Dafik for help with LC ESI-MS experiments and
Prof. Marc d’Alarcao for helpful discussions. This work was sup-
ported in part by National Institutes of Health Grants GM65500
and by National Science Foundation Grants CHE-0236846 and
CHE-0320783. K. K. is a DuPont Young Professor.
[41] Z. Y. Luo, Q. S. Zhang, Y. Oderaotoshi, D. P. Curran, Science
2001, 291, 1766.
[42] Q. S. Zhang, D. P. Curran, Chem. Eur. J. 2005, 11, 4866.
[43] K. Mikami, H. Matsuzawa, S. Tekeuchi, Y. Nakamura, D. P.
Curran, Synlett 2004, 2713.
[44] D. P. Curran, Z. Y. Luo, J. Am. Chem. Soc. 1999, 121, 9069.
[45] S. Dandapani, D. P. Curran, J. Org. Chem. 2004, 69, 8751.
[46] A 1:1 mixture of 2,4,6-collidine and 1 in CD2Cl2 was followed
by NMR spectroscopy. In 3 minutes, 50% of collidine was al-
kylated.
[1] M. H. Caruthers, Science 1985, 230, 281.
[2] R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149.
[3] L. Andersson, L. Blomberg, M. Flegel, L. Lepsa, B. Nilsson,
M. Verlander, Biopolymers 2000, 55, 227.
[4] M. A. Shogren-Knaak, K. A. McDonnell, B. Imperiali, Tetra-
hedron Lett. 2000, 41, 827.
[5] L. E. Canne, R. L. Winston, S. B. H. Kent, Tetrahedron Lett.
1997, 38, 3361.
[6] M. Villain, J. Vizzavona, K. Rose, Chem. Biol. 2001, 8, 673.
[7] V. Montanari, K. Kumar, J. Am. Chem. Soc. 2004, 126, 9528.
[47] A. L. Frelinger, J. E. Zull, J. Biol. Chem. 1984, 259, 5507.
Received: December 7, 2005
Published Online: January 3, 2006
Eur. J. Org. Chem. 2006, 874–877
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
877