Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) T. Suzuki, Chem. Rev., 2011, 111, 1825; (b) S.-F. Zhu and
Q.-L. Zhou, Acc. Chem. Res., 2017, 50, 988; (c) P. Chen, Y. Wu,
S. Zhu, H. Jiang and Z. Ma, Org. Chem. Front., 2018, 5, 132;
(d) M. Iglesias and L. A. Oro, Chem. Soc. Rev., 2018, 47, 2772.
2 (a) P. Diversi, S. Iacoponi, G. Ingrosso, F. Laschi, A. Lucherini, C. Pinzino,
G. Uccello-Barretta and P. Zanello, Organometallics, 1995, 14, 3275;
(b) J. Jin and D. W. C. MacMillan, Nature, 2015, 525, 87; (c) S.-Y. Hsieh
and J. W. Bode, ACS Cent. Sci., 2017, 3, 66; (d) K. Shin, Y. Park, M.-H. Baik
and S. Chang, Nat. Chem., 2018, 10, 218.
3 (a) N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S. Bernhard, J. Am.
Chem. Soc., 2008, 130, 210; (b) M. T. Vagnini, A. L. Smeigh, J. D.
Blakemore, S. W. Eaton, N. D. Schley, F. D’Souza, R. H. Crabtree,
G. W. Brudvig, D. T. Co and M. R. Wasielewski, Proc. Natl. Acad. Sci.
U. S. A., 2012, 109, 15651; (c) J. D. Blakemore, R. H. Crabtree and
G. W. Brudvig, Chem. Rev., 2015, 115, 12974.
Fig. 4 High-resolution ESI-MS spectrum of 1 before (lower) and after
(upper) treatment with MesN3 (3 equiv.) in degassed DCE under microwave
irradiation.
4 (a) W. Preetz and H.-J. Steinebach, Z. Naturforsch., B: J. Chem. Sci., 1985,
40, 745; (b) R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and
N. A. Powell, J. Chem. Soc., Dalton Trans., 1988, 2677; (c) P. Mura, A. Segre
and S. Sostero, Inorg. Chem., 1989, 28, 2853; (d) R. S. Hay-Motherwell,
G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc.,
Dalton Trans., 1992, 3477; (e) K. C. Fortner, D. S. Laitar, J. Muldoon, L. Pu,
S. B. Braun-Sand, O. Wiest and S. N. Brown, J. Am. Chem. Soc., 2007,
129, 588; ( f ) A. Foi, F. Di Salvo, F. Doctorovich, C. Huck-Iriart,
´
´
´
J. M. Ramallo-Lopez, M. Du¨rr, I. Ivanovic-Burmazovic, K. Stirnat,
S. Garbe and A. Klein, Dalton Trans., 2018, 47, 11445.
5 (a) D. J. Gulliver, W. Levason, K. G. Smith, M. J. Selwood and S. G.
Murray, J. Chem. Soc., Dalton Trans., 1980, 1872; (b) R. A. Cipriano,
L. R. Hanton, W. Levason, D. Pletcher, N. A. Powell and M. Webster,
J. Chem. Soc., Dalton Trans., 1988, 2483.
6 J.-U. Rohde and W.-T. Lee, J. Am. Chem. Soc., 2009, 131, 9162.
7 Z. Lu, C.-H. Jun, S. R. de Gala, M. P. Sigalas, O. Eisenstein and
R. H. Crabtree, Organometallics, 1995, 14, 1168.
Scheme 1 Possible mechanism for 1-catalyzed reaction of 4 (4c as
example) to give 6. Charges of the Ir–L1 intermediates, if any, are omitted.
8 (a) D. Y. Shopov, B. Rudshteyn, J. Campos, V. S. Batista, R. H. Crabtree
and G. W. Brudvig, J. Am. Chem. Soc., 2015, 137, 7243; (b) D. Y. Shopov,
B. Rudshteyn, J. Campos, D. J. Vinyard, V. S. Batista, G. W. Brudvig and
R. H. Crabtree, Chem. Sci., 2017, 8, 1642.
9 C. W. Lange and C. G. Pierpont, J. Am. Chem. Soc., 1992, 114, 6582.
10 R. Fu, J. E. Bercaw and J. A. Labinger, Organometallics, 2011, 30, 6751.
11 H.-F. Ip, Y.-M. So, H. K. Lee, I. D. Williams and W.-H. Leung, Eur.
J. Inorg. Chem., 2012, 3289.
vacant site for aryl azide coordination. Decomposition of the
coordinated aryl azide gave an Ir-imido intermediate; this
intermediate underwent intramolecular nitrene C(sp3)–H inser-
tion to afford dihydroquinazolinone intermediate 5 (or its
bound form), which is converted to quinazolinone 6 by
Ir-catalyzed dehydrogenation, analogous to previous examples 12 M. Kinauer, M. Diefenbach, H. Bamberger, S. Demeshko, E. J. Reijerse,
C. Volkmann, C. Wu¨rtele, J. van Slageren, B. de Bruin, M. C. Holthausen
and S. Schneider, Chem. Sci., 2018, 9, 4325.
13 C. Ait-Ramdane-Terbouche, A. Terbouche, M. Khalfaoui, C.-L.
of Ir-catalyzed dehydrogenation of secondary amines to
imines.1a Indeed, treatment of 5a with 1 (5 mol%) in DCE
under microwave-assisted conditions for 1 h afforded 6a in 92%
yield (Scheme S3, ESI†); for the same treatment with the Ir–L3
complex 3 or [IrIII(L3)(Cl)(CO)], no reaction was observed,
possibly owing to the larger steric hindrance of their binaphthyl
salen ligand L3.
In conclusion, we have prepared and characterized a series
of Ir(IV)–salen complexes (1–3). Complex 1 exhibited a high
catalytic reactivity toward aryl azides for a consecutive nitrene
C(sp3)–H insertion followed by dehydrogenation, providing a
tandem catalytic system for the formation of quinazolinones.
We gratefully acknowledge the financial support from Hong
Kong Research Grants Council (GRF 17303815, 17301817) and Basic
Douib, H. Lakhdari, D. Lerari, K. Bachari, D. Mezaoui, J.-P. Guegan
and D. Hauchard, J. Mol. Struct., 2018, 1170, 119.
14 (a) A. J. Stapleton, M. E. Sloan, N. J. Napper and R. C. Burns, Dalton
Trans., 2009, 9603; (b) S. A. Adonin, N. V. Izarova, C. Besson,
¨
P. A. Abramov, B. Santiago-Schubel, P. Kogerler, V. P. Fedin and
M. N. Sokolov, Chem. Commun., 2015, 51, 1222.
15 (a) S. Kanchiku, H. Suematsu, K. Matsumoto, T. Uchida and
T. Katsuki, Angew. Chem., Int. Ed., 2007, 46, 3889; (b) Y. Yasutomi,
H. Suematsu and T. Katsuki, J. Am. Chem. Soc., 2010, 132, 4510;
(c) M. Ichinose, H. Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida
and T. Katsuki, Angew. Chem., Int. Ed., 2011, 50, 9884; (d) T. Uchida
and T. Katsuki, Chem. Rec., 2014, 14, 117.
16 (a) J. Buendia, G. Grelier and P. Dauban, in Adv. Organomet. Chem.,
´
ed. P. J. Perez, 2015, vol. 64, p. 77; (b) Y. Park, Y. Kim and S. Chang,
Chem. Rev., 2017, 117, 9247; (c) J. C. K. Chu and T. Rovis, Angew.
Chem., Int. Ed., 2018, 57, 62.
Research Program-Shenzhen Fund (JCYJ20160229123546997, 17 (a) D. S. Glueck, F. J. Hollander and R. G. Bergman, J. Am. Chem.
Soc., 1989, 111, 2719; (b) D. S. Glueck, J. Wu, F. J. Hollander and
R. G. Bergman, J. Am. Chem. Soc., 1991, 113, 2041.
18 C.-M. Che and J.-S. Huang, Coord. Chem. Rev., 2003, 242, 97.
JCYJ20170412140251576, and JCYJ20170818141858021). We also
thank Prof. Hung Kay Lee and Dr Xiao-Yong Chang for assistance
in the EPR and X-ray crystallographic studies, respectively.
19 Y. Liu, J. Wei and C.-M. Che, Chem. Commun., 2010, 46, 6926.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019