10.1002/chem.202001721
Chemistry - A European Journal
FULL PAPER
can reveal useful when the starting materials are sensitive
to basic conditions.
E. Barde, A. Guérinot, J. Cossy, Org. Lett. 2017, 19, 6068-
6071.
[1]
[2]
A. Postigo, Late-Stage Fluorination of Bioactive Molecules
and Biologically-Relevant Substrates, Elsevier Science,
2018.
(a) B. K. Park, N. R. Kitteringham, Drug Metab. Rev. 1994,
26, 605-643; (b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J.
Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-
8359.
[17]
[3]
(a) X.-L. Qiu, X. Yue, F.-L. Qing, in Chiral Drugs:
Chemistry and Biological Action, 2011, pp. 195-251; (b) J.
Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem.
Rev. 2014, 114, 2432-2506; (c) D. O’Hagan, J. Fluor.
Chem. 2010, 131, 1071-1081.
[4]
[5]
[6]
[7]
K. Bush, P. A. Bradford, Cold Spring Harb. Perspect Med.
2016, 6.
B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Rev.
2007, 107, 4437-4492.
P. Galletti, D. Giacomini, Curr. Med. Chem. 2011, 18,
4265-4283.
S. B. Rosenblum, T. Huynh, A. Afonso, H. R. Davis, N.
Yumibe, J. W. Clader, D. A. Burnett, J. Med. Chem. 1998,
41, 973-980.
[8]
(a) K. Sato, A. Tarui, S. Matsuda, M. Omote, A. Ando, I.
Kumadaki, Tetrahedron Lett. 2005, 46, 7679-7681; (b) A.
Tarui, N. Kawashima, K. Sato, M. Omote, Y. Miwa, H.
Minami, A. Ando, Tetrahedron Lett. 2010, 51, 2000-2003;
(c) A. Tarui, T. Ikebata, K. Sato, M. Omote, A. Ando, Org.
Biomol. Chem. 2014, 12, 6484-6489.
[9]
(a) A. Tarui, S. Kondo, K. Sato, M. Omote, H. Minami, Y.
Miwa, A. Ando, Tetrahedron 2013, 69, 1559-1565; (b) A.
Tarui, E. Miyata, A. Tanaka, K. Sato, M. Omote, A. Ando,
Synlett 2015, 26, 55-58.
[10]
[11]
A. Tarui, N. Kawashima, T. Kawakita, K. Sato, M. Omote,
A. Ando, J. Org. Chem. 2013, 78, 7903-7911.
(a) V. Koch, M. M. Lorion, E. Barde, S. Bräse, J. Cossy,
Org. Lett. 2019, 21, 6241-6244. (b) Due to the presence of
two electron-withdrawing substituents in the alpha position
of the -lactam, the carbonyl of the amide is probably too
reactive towards Grignard reagents.
[12]
[13]
(a) S. Hosseyni, A. Jarrahpour, Org. Biomol. Chem. 2018,
16, 6840-6852; (b) C. R. Pitts, T. Lectka, Chem. Rev.
2014, 114, 7930-7953.
(a) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435-
1462; (b) M. Corpet, X.-Z. Bai, C. Gosmini, Adv. Synth.
Catal. 2014, 356, 2937-2942; (c) J. M. Hammann, D. Haas,
P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 4478-4481;
(d) J. M. Hammann, L. Thomas, Y.-H. Chen, D. Haas, P.
Knochel, Org. Lett. 2017, 19, 3847-3850; (e) L. Thomas, F.
H. Lutter, M. S. Hofmayer, K. Karaghiosoff, P. Knochel,
Org. Lett. 2018, 20, 2441-2444; (f) S. Linke, S. M.
Manolikakès, A. Auffrant, C. Gosmini, Synthesis 2018, 50,
2595-2600; (g) F. H. Lutter, S. Graßl, L. Grokenberger, M.
S. Hofmayer, Y.-H. Chen, P. Knochel, ChemCatChem
2019, 11, 5188-5197; (h) C. Dorval, E. Dubois, Y. Bourne-
Branchu, C. Gosmini, G. Danoun, Adv. Synth. Catal. 2019,
361, 1777-1780; (i) M. S. Hofmayer, A. Sunagatullina, D.
Brösamlen, P. Mauker, P. Knochel, Org. Lett. 2020, 22,
1286-1289; For 5-membered ring aryl lactones, in our
conditions and in Knochel et al. conditions, a similar yield
was obtained, such as for 10aa. (j) F. H. Lutter, L.
Grokenberger, P. Spieß, J. M. Hammann, K. Karaghiosoff,
P. Knochel, Angew. Chem. Int. Ed. 2020, 59, 5546-5550.
K. Araki, M. Inoue, Tetrahedron 2013, 69, 3913-3918.
(a) L. Gonnard, A. Guérinot, J. Cossy, Chem. Eur. J. 2015,
21, 12797-12803; (b) In contrast to α-fluoro β-lactam 1a,
the cross-coupling is working for non-fluoro β-lactam 1
[14]
[15]
when treated with
2 mol % CoCl2 and the bis(o-
methoxyphenyl)zinc reagent 2i as the cross-coupled
product 3i was isolated in 76% yield.
[16]
The allylation of the α-fluoro β-lactam 1a” under basic
conditions (LDA, -78 °C, followed by the addition of allyl
bromide) led to the corresponding product 6a in 59% (see
SI). Due to the chemoselectivity of the cross-coupling, this
6
This article is protected by copyright. All rights reserved.