Organic Letters
Letter
would likely undergo rapid hydrolysis to the amide in the
hygroscopic MeCN solvent used.
An optimization study showed that a ketone in the 2-position
of the pyrrole was essential to enable lactam formation (Table
3, entries 1−5) and that a second ketone was actually
Synthesis procedures; additional spectral and character-
1
ization data, including H and 13C NMR (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Table 3. Discovery of a Novel Three-Photon Rearrangement
Cascade Sequence of 2-Acylpyrroles to 2-
Azabicyclo[3.3.1]nonanes
Notes
b
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the Engineering and Physical Sciences Research
Council (EP/K006053/1 and EP/L003325/1) for funding.
■
REFERENCES
a
■
entry
product
R1
R2
22 (%)
43
dr
(1) Poplata, S.; Troster, A.; Zou, Y.-Q.; Bach, T. Chem. Rev. 2016,
̈
1
2
3
4
5
6
22a
22b
22c
22d
22e
22f
Me
Et
H
H
H
H
H
Ac
9:1
116, 9748−9815.
53
97:3
98:2
98:2
92:8
97:3
(2) Streit, U.; Bochet, C. G. Belstein. Beilstein J. Org. Chem. 2011, 7,
525−542.
c
Cy
tBu
57 (54)
39
(3) Zimmerman, H. E.; Armesto, D. Chem. Rev. 1996, 96, 3065.
(4) P. J CRC Handbook of Photochemistry and Photobiology, 2nd ed.;
Horspool, W. M., Lenci, F., Eds.; CRC Press: Boca Raton, 2004;
Chapter 58, 1−70.
CH2C(Me)2Ph
41
Me
31
a
b
c
Determined by 1H NMR. Products are racemic. Flow reaction
(5) Booker-Milburn, K. I.; Baker, J. R.; Bruce, I. Org. Lett. 2004, 6,
1481−1484.
yield.
(6) Maskill, K. G.; Knowles, J. P.; Elliott, L. D.; Alder, R. W.; Booker-
Milburn, K. I. Angew. Chem., Int. Ed. 2013, 52, 1499−1502.
(7) Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature 2005,
̈
deleterious to the process (entry 6). Although yields averaged
around 50%, this in itself is quite remarkable as intense, high
energy 254 nm UV light is used and the successful formation of
22 relies on three successive and independent photon-mediated
events. Unfortunately, three sequential photochemical reactions
make for a very low overall quantum yield and thus proved to
be a scalability issue in batch. However, we were keen to make
gram quantities of these compounds and were pleased to be
able to produce 1.83 g of 22c (R1 = Cy, R2 = H) in a 13 h run
in our 3 × 36W 254 nm FEP flow reactor. This highlights once
again the value of flow photochemistry for scaling up very
unproductive batch reactions.16
It has been demonstrated that in the photocycloaddition
rearrangement of simple pyrroles OTBS substitution of the N-
butenyl side chain exerts powerful stereocontrol during
subsequent tricyclic aziridine formation. Further investigation
of 2-cyanopyrroles bearing other bulky groups led to the
discovery of a novel two-photon pathway for the formation of
highly unusual 3,4,7-fused imine ring systems. In the case of 2-
acylpyrroles, OTBS substitution facilitates an unprecedented
and highly stereoselective three-photon cascade sequence
leading to azabicyclo[3.3.1]nonanes. Overall, this further
underlines the versatility of photochemistry for the synthesis
of highly complex molecules from simple starting materials.
The ability to select a desired reaction manifold through
substituent choice allows access to broad areas of molecular
space from a common structural starting point, potentially
making it of considerable value in drug discovery.
436, 1139−1140.
(8) For representative examples of chiral auxiliaries in photochemical
transformations, see: (a) Inoue, Y. Chem. Rev. 1992, 92, 741−770.
(b) Chen, C.; Chang, V.; Cai, X.; Duesler, E.; Mariano, P. S. J. Am.
Chem. Soc. 2001, 123, 6433−6434. (c) Dussault, P. H.; Han, Q.; Sloss,
D. G.; Symonsbergen, D. J. Tetrahedron 1999, 55, 11437−11454.
(d) Bertrand, S.; Hoffmann, N.; Pete, J.-P. Tetrahedron 1998, 54,
4873−4888. (e) Shepard, M. S.; Carreira, E. M. Tetrahedron 1997, 53,
16253−16276.
(9) (a) Blackham, E. E.; Knowles, J. P.; Burgess, J.; Booker-Milburn,
K. I. Chem. Sci. 2016, 7, 2302−2307. (b) Gerry, C. J.; Hua, B. K.;
Wawer, M. J.; Knowles, J. P.; Nelson, S. D., Jr.; Verho, O.; Dandapani;
Wagner, S. B. K.; Clemons, P. A.; Booker-Milburn, K. I.; Boskovic, Z.
V.; Schreiber, S. L. J. Am. Chem. Soc. 2016, 138, 8920−8927.
(10) Hiraoka, A. J. Chem. Soc. D 1970, 1306−1306.
(11) Evans, D. A.; Borg, G.; Scheidt, K. A. Angew. Chem., Int. Ed.
2002, 41, 3188−3191.
(12) Knowles, J. P.; Booker-Milburn, K. I. Chem. - Eur. J. 2016, 22,
11429−11434.
(13) We have previously shown that cyclobutane formation is
reversible under photochemical conditions. However, for the pyrroles
employed in the present study, conversion to aziridine is considerably
faster than reversion to pyrrole. Additionally, cyclobutanes have been
found to form as the endo isomer (see the SI).
(14) (a) Beckwith, A. L. J.; Lawrence, T.; Serelis, A. K. J. Chem. Soc.,
Chem. Commun. 1980, 484. (b) Beckwith, A. L. J.; Lawrence, T.;
Serelis, A. K. J. Chem. Soc., Chem. Commun. 1980, 484. (c) Beckwith, A.
L. J. Tetrahedron 1981, 37, 3073. (d) Beckwith, A. L. J.; Schiesser, C.
H. Tetrahedron Lett. 1985, 26, 373. (e) Spellmeyer, D. C.; Houk, K. N.
J. Org. Chem. 1987, 52, 959.
(15) (a) Klebe, J. F.; Finkbeiner, H.; White, D. M. J. Am. Chem. Soc.
1966, 88, 3390−3395. (b) Misaki, T.; Kurihara, M.; Tanabe, Y. Chem.
Commun. 2001, 2478−2479.
(16) Elliott, L. D.; Knowles, J. P.; Koovits, P. J.; Maskill, K. G.; Ralph,
M. J.; Lejeune, G.; Edwards, L. J.; Robinson, R. I.; Clemens, I. R.; Cox,
B.; Pascoe, D. D.; Koch, G.; Eberle, M.; Berry, M. B.; Booker-Milburn,
K. I. Chem. - Eur. J. 2014, 20, 15226−15232.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
D
Org. Lett. XXXX, XXX, XXX−XXX