Mendeleev Commun., 2007, 17, 204–206
2 (a) I. V. Vlasiuk, V. A. Bagryansky, N. P. Gritsan, Yu. N. Molin, A. Yu.
to those recorded upon thermolysis in dodecane (Figure 2) and
were simulated as a superposition of resonance lines from
radicals 2b and 3b, as discussed above. The same hyperfine
coupling constants (aN = 5.2 G and aN = 3.96 G) were extracted
for radicals 2b and 3b. Unlike the situation in squalane and
dodecane, the spectra of individual radicals were symmetrical
due to the very low viscosity of CS2. Peak-to-peak widths
(∆Hpp) for radicals 2b and 3b [Figure 4(a)] are equal to 0.168
and 0.052 mT, respectively [Figure 4(a)]. The difference in
∆Hpp is due to the much smaller hyperfine coupling constants
with protons of aryl substituents in 3b (~0.01–0.03 mT) com-
paring to 2b (0.03–0.07 mT). The aH values were taken from
UB3LYP/6-31G(d) calculations.
Makarov, Yu. V. Gatilov, V. V. Shcherbukhin and A. V. Zibarev, Phys.
Chem. Chem. Phys., 2001, 3, 409; (b) N. P. Gritsan, V. A. Bagryansky,
I. V. Vlasyuk, Yu. N. Molin, A. Yu. Makarov, M. S. Platz and A. V.
Zibarev, Izv. Akad. Nauk, Ser. Khim., 2001, 1973 (Russ. Chem. Bull., Int.
Ed., 2001, 50, 2064); (c) K. V. Shuvaev, V. A. Bagryansky, N. P. Gritsan,
A. Yu. Makarov, Yu. N. Molin and A. V. Zibarev, Mendeleev Commun.,
2003, 178; (d) N. P. Gritsan, S. N. Kim, A. Yu. Makarov, E. N. Chesnokov
and A. V. Zibarev, Photochem. Photobiol. Sci., 2006, 5, 95; (e) N. P.
Gritsan, E. A. Pritchina, T. Bally, A. Yu. Makarov and A. V. Zibarev,
J. Phys. Chem. A, 2007, 111, 817.
3 (a) T. Chivers, J. F. Richardson and N. R. M. Smith, Inorg. Chem., 1986,
25, 272; (b) R. T. Boere, J. Fait, K. Larsen and J. Yip, Inorg. Chem.,
1992, 31, 1417; (c) C. Knapp, E. Lork, T. Borrmann, W.-D. Stohrer and
R. Mews, Eur. J. Inorg. Chem., 2003, 3211; (d) C. Knapp, E. Lork, R. Mews
and A. V. Zibarev, Eur. J. Inorg. Chem., 2004, 2446; (e) C. Knapp,
E. Lork, R. Maggiulli, P. G. Watson, R. Mews, T. Borrmann, W.-D. Stohrer
and U. Behrens, Z. Anorg. Allg. Chem., 2004, 630, 1235; (f) C. Knapp
and R. Mews, Eur. J. Inorg. Chem., 2005, 3536.
Figure 4 shows the formation of radical 3b in the first
minutes of photolysis (its amount does not depend on further
irradiation, while the amount of radical 2b continues to grow).
Therefore, it is clear from kinetic data (Figures 3 and 4) that
radicals 3 are formed upon the thermolysis or photolysis of
corresponding minor impurities in 1. Typical (and practically
non-removable) impurities in 1a–e3 are correspondingly sub-
4 K. T. Bestari, R. T. Boere and R. T. Oakley, J. Am. Chem. Soc., 1989,
111, 1579.
5 (a) S. A. Fairhurst, K. M. Johnson, L. H. Sutcliffe, K. F. Preston, A. J.
Banister, Z. V. Hauptman and J. Passmore, J. Chem. Soc., Dalton Trans.,
1986, 1465; (b) P. J. Hayes, R. T. Oakley, A. W. Cordes and W. T.
Pennington, J. Am. Chem. Soc., 1985, 107, 1346.
stituted compounds 4,7 which can formally be transformed into
†
·
radicals 3 by loss of a SN fragment (Scheme 4). It should be
6 (a) A. Carrington and A. D. MacLachlan, Introduction to Magnetic
Resonance, Harper and Row, New York, Evanston, London, 1967;
(b) P. W. Atkins and D. Kivelson, J. Chem. Soc., 1966, 44, 169.
7 (a) A. D. Bond, D. A. Haynes and J. M. Rawson, Can. J. Chem., 2002, 80,
1507 and references therein; (b) I. Ernst, W. Holick, G. Rihs, D. Schomburg,
D. Shoham, D. Wenkert and R. B. Woodward, J. Am. Chem. Soc., 1981,
103, 1540.
8 C. Knapp, Doctoral Thesis, Universität Bremen, Bremen, Germany, 2002.
9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-
Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.6,
Gaussian Inc., Pittsburgh, PA, 1998.
noted that radicals 3 are generated much faster than radicals 2
on both thermolysis and photolysis [Figures 3 and 4(b)].
S
Ar
N4
Ar
N
N
N
N
3
kT or hv
5
Ar
Ar
2 N
N6
– [SN]
S1
S
4
3
Scheme 4
Interestingly, corresponding cations 2a–e+ and 3a–e+ were
detected by mass spectrometry (EI, 70 eV) of 1a–e,3(c) and salts
of 3a+ and 3c+ were identified by XRD as by-products of the
reaction between 1a,c and [M(SO2)x][AsF6]2 (M = Co, Hg).8
To the best of our knowledge, however, the formation of
radicals 3 from precursors 4 has never been observed. This
reaction will be the topic of further research.
This work was supported by the Russian Foundation for
Basic Research (project nos. 04-03-32259 and 07-03-00467),
Deutsche Forschungsgemeinschaft (project no. 436 RUS 113/
486/0-3 R), the Siberian Branch of the Russian Academy of
Sciences (interdisciplinary project no. 25). C.K. acknowledges
the support of the BFK NaWi, University of Bremen.
References
1 (a) K. Awaga, T. Tanaka, T. Shirai, Y. Umezono and W. Fujita, C. R.
Chimie, 2007, 10, 52; (b) K. Awaga, T. Tanaka, T. Shirai, M. Fujimori,
Y. Suzuki, H. Yoshikawa and W. Fujita, Bull. Chem. Soc. Jpn., 2006, 79,
25; (c) J. M. Rawson, A. Alberola and A. Whalley, J. Mater. Chem.,
2006, 16, 2560; (d) J. M. Rawson and F. Palacio, Struct. Bond., 2001,
100, 93.
Received: 26th December 2006; Com. 06/2851
– 206 –