1330
M. Xue et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1327±1331
in vitro potency observed with the 30-thiocarbamate
analogues did not appear to translate into better ecacy
in vivo. It is also important to point out that a number of
30-N-thiocarbamates demonstrated impressive potency
against resistant HCT-116 cell line in vitro. We believe
the results reported herein should further our under-
standing of paclitaxel side chain SAR.
17. General procedure for the preparation of 30-thiocarba-
mate bearing paclitaxel analogues 4a±4f: p-Nitrophenyl car-
bamate 10a/10b (0.25 mmol, 1 equiv) was dissolved in dry
THF (4 mL). To this solution at 0 ꢀC was added a suspension
of RSNa (0.33 mmol, 1.3 equiv.) in THF (1 mL). The reaction
mixture was stirred at rt for 90 min. At this point, the solvent
was removed, the resulting residue was puri®ed with silica gel
chromatography (20±30% EtOAc:Hexanes) to provide the
corresponding 20,7-bisTES protected 30-thiocarbamate pacli-
taxel intermediate. This intermediate (0.24 mmol) was then
dissolved in CH3CN (5 mL), and treated at 0 ꢀC with pyridine
(0.70 mL), followed by 48% HF (2.1 mL). The reaction mix-
ture was kept at 5 ꢀC for 12 h. The reaction mixture was then
diluted with EtOAc (75 mL), and washed with 1 N HCl (Â1),
NaHCO3 saturated solution (Â4) and water. The resulting
organic phase was dried and concd in vacuo. The residue was
chromatographed (40±60% EtOAc:Hexanes) to give the
desired ®nal desilylated 30-thiocarbamate derivative in good to
Acknowledgements
We are grateful to Dr. S.E. Klohr for the measurements
of high resolution mass spectra.
References and Notes
1
excellent overall yield. H NMR of 4a (300 MHz, CDCl3) d
1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.;
McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
2. Rowinsky, E. K. Annu. Rev. Med. 1997, 48, 353.
3. Venook, A. P.; Egorin, M. J.; Rosner, G. L.; Brown, T. D.;
Jahan, T. M.; Batist, G.; Hohl, R.; Budman, D.; Ratain, M. J.;
Kearns, C. M.; Schilsky, R. L. J. Clin. Oncol. 1998, 16, 1811
and references therein.
4. (a) Schi, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277,
665. (b) Horwitz, S. B. Trends Pharm. Sci. 1992, 13, 134.
5. Chen, S. H.; Farina, V. In The Chemistry and Pharmacol-
ogy of Paclitaxel and its Derivatives; Farina, V., Ed.; Elsevier:
Amsterdam, 1995; pp 165±255.
6. Vyas, D. M.; Kadow, J. F. In Progress in Medicinal Chem-
istry, 35, Ellis, G. P., Luscoombe, D. K., Oxford, A. H., Ed.;
Elsevier: Amsterdam, 1995; p 289.
7. For reviews: (a) Kant, J. In The Chemistry and Pharmacol-
ogy of Paclitaxel, Farina, V., Ed.; Elsevier: Amsterdam, 1995;
p 255. (b) Ojima, I.; Lin, S.; Wang, T. Curr. Med. Chem. 1999,
6, 519. (c) Georg, G. I.; Boge, T. C.; Cheruvallath, Z. S.;
Clowers, J. S.; Harriman, G. C. B.; Hepperle, M.; Park, H. In
Taxol: Science and Applications, Suness, M., Ed.; CRC; Boca
Raton: 1995; pp 317±375.
8.13±8.10 (m, 2H), 7.64±7.26 (m, 8H), 6.26 (m, 3H), 5.65 (d,
J=7.0 Hz, 1H), 5.60 (m, 1H), 4.93 (d, J=8.7 Hz, 1H), 4.68
(m, 1H), 4.40 (m, 1H), 4.23 (AB q, J=8.4 Hz, 2H), 3.79 (d,
J=6.9 Hz, 1H), 3.48 (d, J=5.0 Hz, 1H), 2.80±0.74 (m, 31H,
1
incl. singlets at 2.36, 2.24, 1.83, 1.68, 1.26, 1.15, 3H each). H
NMR of 4b (300 MHz, CDCl3) d 8.11±8.08 (m, 2H), 7.60±7.32
(m, 8H), 6.24 (m, 3H), 5.65 (d, J=7.0 Hz, 1H), 5.54 (d, J=8.7
Hz, 1H), 4.93 (d, J=8.0 Hz, 1H), 4.65 (s, 1H), 4.40 (m, 1H),
4.22 (AB q, J=8.5 Hz, 2H), 3.79 (d, J=7.0 Hz, 1H), 3.52 (d,
J=3.9 Hz, 1H), 2.60±1.14 (m, 31H, incl. singlets at 2.36, 2.23,
1
1.83, 1.67, 1.26, 1.14, 3H each, 1.34, 9H). H NMR of 4c (300
MHz, CDCl3) d 8.12±8.09 (m, 2H), 7.59±7.45 (m, 4H), 6.36±
6.21 (m, 4H), 5.64 (d, J=6.9 Hz, 2H), 4.93 (d, J=8.4 Hz, 1H),
4.73 (d, J=3.2 Hz, 1H), 4.40 (m, 1H), 4.21 (AB q, J=8.3 Hz,
2H), 3.80 (d, J=6.8 Hz, 1H), 3.68 (d, J=5.6 Hz, 1H), 2.76±
1.13 (m, 28H, incl. singlets at 2.38, 2.23, 1.86, 1.66, 1.24, 1.13,
1
3H each), 0.76 (t, J=7.1 Hz, 3H). H NMR of 4d (300 MHz,
CDCl3) d 8.11±8.08 (m, 2H), 7.59±7.40 (m, 4H), 6.37±6.17 (m,
4H), 5.64 (m, 2H), 4.94 (d, J=8.3 Hz, 1H), 4.71 (m, 1H), 4.40
(AB q, J=8.4 Hz, 2H), 3.80 (d, J=7.0 Hz, 1H), 3.62 (d,
J=5.5 Hz, 1H), 2.62±1.13 (m, 31H, incl. singlets at 2.39, 2.23,
1
1.87, 1.66, 1.24, 1.14, 3H each, 1.35, 9H). H NMR of 4e (300
8. Georg, G. I.; Boge, T. C.; Cheruvallath, Z. S.; Harriman,
G. C. B.; Hepperle, M.; Park, H.; Himes, R. H. Bioorg. Med.
Chem. Lett. 1994, 4, 335.
MHz, CDCl3) d 8.13±8.10 (m, 2H), 7.61±7.42 (m, 4H), 6.39±
6.15 (m, 4H), 5.66 (d, J=7.1 Hz, 2H), 4.94 (d, J=7.9 Hz, 1H),
4.74 (d, J=2.1 Hz, 1H), 4.41 (dd, J=6.7 Hz, J0=10.8 Hz, 1H),
4.23 (AB q, J=8.4 Hz, 2H), 3.81 (d, J=7.1 Hz, 1H), 2.80±0.78
(m, 25H, incl. singlets at 2.38, 2.24, 1.88, 1.68, 1.25, 1.15, 3H
9. (a) Holton, R. A.; Nadizadeh, H.; Rengan, K.; Tao, C.
PCT Patent: WO 9421251. (b) Chen, S.H.; Xue, M.; Huang,
S.; Long, B. H.; Fairchild, C. A.; Rose, W. C.; Kadow, J. F.;
Vyas, D. M. Bioorg. Med. Chem. Lett. 1997, 7, 3057.
10. Denis, J.-N.; Greene, A.; Guenard, D.; Gueritte-Voelegein,
F.; Mangatal, L.; Potier, P. J. Am. Chem. Soc. 1988, 110, 5917.
11. For a reference on N-Cbz protected b-lactam, see: Mar-
ing, C. J.; Grampovnik, D. J.; Yeung, C. M.; Klein, L. L.; Li,
L.; Thomas, S. A.; Plattner, J. J. Bioorg. Med. Chem. Lett.
1994, 4, 1429.
1
each), 0.82 and 0.80, (d, J=6.7 Hz, 3H each). H NMR of 4f
(300 MHz, CDCl3) d 8.10±8.07 (m, 2H), 7.60±7.38 (m, 4H),
6.35±6.20 (m, 4H), 5.62 (d, J=7.0 Hz, 1H), 4.90 (d, J=8.1 Hz,
1H), 4.71 (s, 1H), 4.38 (m, 1H), 4.20 (AB q, J=8.4 Hz, 2H),
3.78 (d, J=7.0 Hz,1H), 3.66 (s, 1H), 3.45 (m, 1H), 2.60±1.07
(m, 28H, incl. singlets at 2.36, 2.20, 1.84, 1.64, 1.22, 1.10, 3H
each, doublets (J=6.8 Hz, 3H each) at 1.16, 1.09).
1
18. Proton NMR spectra of 3-thiourea derivatives 5a±5e: H
12. Holton, R. A. U.S. Patent 5, 015, 744 1991. (b) Holton,
R. A. U.S. Patent 5, 136, 060 1992. (c) Ojima, I.; Habus, I.;
Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C.-M.; Brigaud, T.
Tetrahedron 1992, 48, 6985.
13. Swindell, C. S.; Krauss, N. E.; Horwitz, S. B.; Ringel, I. J.
Med. Chem. 1991, 34, 1176.
14. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks,
A.; Tierney, S.; Nofziger, T. H.; Currents, M. J.; Seni, D.;
Boyd, M. R. Cancer Res. 1988, 48, 4827.
NMR of 5a (300 MHz, CDCl3) d 8.05±8.02 (m, 2H), 7.55±7.19
(m, 13H), 6.87 (bs, 2H), 6.23±6.18 (m, 3H), 5.60 (d, J=7.1 Hz,
1H), 4.84 (d, J=9.4 Hz, 1H), 4.72 (s, 1H), 4.49 (m, 2H), 4.32
(m, 1H), 4.18 (AB q, J=9.4 Hz, 2H), 3.72 (d, J=7.0 Hz, 1H),
2.62±1.07 (m, 22H, incl. singlets at 2.35, 2.18, 1.75, 1.63, 1.17,
1.08, 3H each). 1H NMR of 5b (300 MHz, CDCl3) d 8.07±8.04
(m, 2H), 7.60±7.30 (m, 8H), 6.66 (bs, 1H), 6.26 (m, 3H), 5.63
(d, J=7.0 Hz, 1H), 4.90 (d, J=8.4 Hz, 1H), 4.80 (s, 1H), 4.36
(m, 1H), 4.20 (AB q, J=8.4 Hz, 2H), 3.84 (m, 1H), 3.76 (d,
J=6.9 Hz, 1H), 3.13 (bs, 2H), 2.61±1.11 (m, 28H, incl. singlets
at 2.35, 2.21, 1.80, 1.66, 1.22, 1.12, 3H each), 0.86 (t, J=7.2
15. Rose, W. C. Anti-Cancer Drugs 1992, 3, 311.
16. For a thoughful discussion of the involvements of the side
chain polar groups in hydrogen bonding, see: Guenard, D.;
Gueritte-Voegelein, F.; Potier, P. Acc. Chem. Res. 1993, 26,
160, and references cited therein. Also see: Gao, Q.; Wei, J.
M.; Chen, S. H. Pharma. Res. 1995, 12, 337.
1
Hz, 3H). H NMR of 5c (300 MHz, CDCl3) d 8.09±8.06 (m,
2H), 7.58±7.33 (m, 8H), 6.58 (d, J=9.1 Hz, 1H), 6.37±6.26 (m,
3H), 6.18 (s, 1H), 5.64 (d, J=7.1 Hz, 1H), 4.91 (d, J=7.8 Hz,
1H), 4.85 (s, 1H), 4.39 (m, 1H), 4.22 (AB q, J=8.5 Hz, 2H),