4
Tetrahedron
15. (a) Yadav, J. S.; Reddy, B. V. S.; Raj, K. S.; Reddy, K. B.; Prasad, A. R.
reached. In contrast, 2 mol% HfCl4 caused no shift from the
Synthesis, 2001, 2277–2280; (b) Bhagat, S.; Chakraborti, A. K. J. Org.
Chem. 2008, 73, 6029–6032.
16. (a) Zhi, L.; Yamamoto, H. J. Am. Chem. Soc. 2010, 132, 7878–7880; (b)
Ishihara, K.; Nakayama, M.; Ohara, S.; Yamamoto, H. Tetrahedron,
2002, 58, 8179–8188; (c) Samyoung, A.; Young, S. S.; Bok, R. Y.; II, N.
J. Organometallics 2000, 19, 277–2780.
imine back to the acetyl. These results indicated that less amount
of HfCl4 catalyst favored the equilibrium of the imine
intermediate, which may compensate the for reaction rate loss
due to the lowered amount of catalyst. On the basis of the above
results, the mechanism of the HfCl4-catalyzed Kabachnik-Fields
reaction is proposed in Figure 3.
17. (a) Bunnal, S.; Hiromichi, E.; Tsutomu, K. J. Am. Chem. Soc. 2007, 129,
1978–1986; (b) Roman, G. Tetrahedron 1995, 51, 10627–10632; (c)
Babak, K. Tetrahedron Lett. 2003, 44, 1051–1053.
18. (a) McFarlane, W.; Rycroft, D. S. Mol. Phys. 1972, 24, 893–895; (b)
Peterson, A. C.; Levsen, S. M.; Cremer, S. E. Phosphorus, Sulfur
Silicon Relat. Elem. 1996, 115, 241–254.
In summary, we have developed a highly efficient protocol for
the HfCl4-catalyzed synthesis of
a variety of α-amino-
phosphonates via the one-pot three-component reaction of
aldehyde, amine, and phosphite in organic solvents. The
experimental data showed that the catalytic activity of HfCl4 is
superior to that of the reported Zr(IV) salts in terms of reaction
rate, product yield, and amount needed. In addition, the strong
NMR evidence elucidated the triple roles of Hf(IV) on the
activation of aldehyde, phosphite, and imine intermediate.
19. (a) Stawinski, J.; Kraszewski, A. Acc. Chem. Res. 2002, 35, 952–960; (b)
Kraszewski, A.; Stawinski, J. Pure Appl. Chem., 2007, 79, 2217–2227.
Supplementary Material
Supplementary
data
(experimental
procedures,
characterization data, and NMR spectra of new compounds)
associated with this article can be found at
Acknowledgments
We thank the National Natural Science Foundation of China
(21262014 and 21562021), Major Science and Technology
Project (20143ACB21014) and Fellowship for Young Scientists
(2015) of Jiangxi Province, Foundation for Returned Chinese
Scholars from MOHRSS (2015).
References and notes
1.
(a) Giannousis, P. P.; Bartkett, P. A. J. Med. Chem. 1987, 30, 1603–
1609; (b) Bird, J.; Mello, R. C. D.; Harper, G. P.; Hunter, D. J.; Karran,
E. H.; Markwell, R. E.; Miles-Williams, A. J.; Rahman, S. S.; Ward, R.
W. J. Med. Chem. 1994, 37, 158–169; (c) Grembecka, J.; Mucha, A.;
Cierpicki, T.; Kafarski, P. J. Med. Chem. 2003, 46, 2641–2655; (d) Wu,
Z.; Walsh, C. T. Proc. Natl. Acad. Sci. 1995, 92, 11603–11609.
(a) Allen, M. K.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med.
Chem. 1989, 32, 1652–1661; (b) Stowasser, B.; Budt, K. H.; Qi, L. J.;
Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625–6628; (c)
Smith, W. W.; Bartlett, P. A. J. Am. Chem. Soc. 1998, 120, 4622–4628.
(a) Beers, S. A.; chwender, C. F.; Loughney, D. A.; Malloy, E.;
Demarest, K.; Jordan, J. Bioorg. Med. Chem., 1996, 4, 1693–1701; (b)
Qingming, W.; Miaoli, Z.; Ruiting, Z.; Liping, L., Caixia, Y.; Shu, X.;
Xueqi, F.; Yuhua, M.; Qingwei, H. Eur. J. Med. Chem. 2012, 49, 354–
364.
2.
3.
4.
(a) Parsons, W. H.; Patchett, A. A.; Bull, H. G.; Schoen, W. R.; Taub,
D.; Davidson, J.; Combs, P. L.; Springer, J. P.; Gadebudch, H.;
Weissberger, B.; Valiant, M. E.; Mellin, T. N.; Busch, R. D. J. Med.
Chem. 1988, 31, 1772–1778; (b) Katoh, M.; Hitatake, J.; Kato, H.; Oda,
J. Bioorg. Med. Chem. Lett. 1996, 6, 439–443; (c) Hiratake, J.; Kato, H.;
Oda, J. J. Am. Chem. Soc. 1994, 116, 12059–12060.
5.
6.
Skropeta, D.; Schworer, R.; Schmidt, R. R. Bioorg. Med. Chem. Lett.
2003, 13, 3351–3354.
(a) Hiratake, J.; Oda, J. Biosci. Biotech. Biochem. 1997, 61, 211218; (b)
Kafarski, P.; Lejczak, B. Phosphorus, Sulfur Silicon Relat. Elem. 1991,
63, 193215.
7.
(a) Bhattacharya, A. K.; Raut, D. S.; Rana, K. C.; Polankia, I. K.; Khan,
M. S.; Iramb, S. Eur. J. Med. Chem. 2013, 66, 146–152; (b) Rezaei, Z.;
Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.;
Zare, H. R. Eur. J. Med. Chem. 2009, 44, 4266–4275.
8.
9.
Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gample, S. P.; Sarkar, D.
RSC Adv. 2014, 4, 7666–7672.
(a) Keglevich, G.; Balint, E. Molecules 2012, 17, 12821–12835; (b)
Zefirov, N. S.; Matveeva, E. D. ARKIVOC 2008, 1, 1–17.
10. Akiyama, T.; Sanada, M.; Fuchide, K. Synlett, 2003, 1463–1464.
11. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141–1143.
12. Chabdrasekhar, S.; Prakash, J.; Jagadeshwar, V.; Narsihmulu, C.
Tetrahedron Lett. 2001, 42, 5561–5563.
13. (a) Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001,
1698–1699; (b) Tao, Q. C.; Sheng, H. T. J. Org. Chem. 1998, 63, 4125–
4128.
14. (a) Wu, J.; Sun, W.; Xia, H. G.; Sun, X. Org. Biomol. Chem. 2006, 4,
1663–1666; (b) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72,
1263–1270.