form to another. Additional delocalized charge was intro-
duced in the form of an imidazole ring in order to decrease
the cytotoxic effect and impart more buffering into the system.
The effect of increased buffering on the transfection efficiency
of the resulting nanoparticles was studied. It was found that
introduction of imidazole groups resulted in enhancement of
transfection efficiency of crosslinked nanoparticles. This
enhancement was attributed to the increased buffering in the
pH range 3–10. Among the series of nanoparticles prepared in
this study, PNIm 10(6) was found to be B2–17 folds superior
compared to PN-2, PEI and commercial transfection reagents
tested in this study, in terms of transfection efficiency in vitro.
siRNA studies involving PNIm 10(6) led to B90% suppres-
sion of gene expression, indicating the efficient delivery of
siRNA. The projected particles were also able to efficiently
carry the desired gene in vivo. These studies thus suggest that
PNIm 10(6) tested in the present study has a potential for
future applications in gene delivery.
PAMAM dendrimers in B16f10 melanoma cells, J. Controlled
Release, 2007, 117, 291–300.
11 S. Nimesh, A. Aggarwal, P. Kumar, Y. Singh, K. C. Gupta and
R. Chandra, Influence of acyl chain length on transfection
mediated by acylated PEI nanoparticles, Int. J. Pharm., 2007,
337, 265–274.
12 X. Gao, R. Kuruba, K. Damodaran, B. W. Day, D. Liu and S. Li,
Polyhydroxylalkyleneamines:
a class of hydrophilic cationic
polymer-based gene transfer agents, J. Controlled Release, 2009,
137, 38–45.
13 S. Nimesh, A. Goyal, V. Pawar, S. Jayaraman, P. Kumar,
R. Chandra, Y. Singh and K. C. Gupta, Polyethylenimine nano-
particles as efficient transfecting agents for mammalian cells,
J. Controlled Release, 2006, 110, 457–468.
14 A. Pathak, P. Kumar, K. Chuttani, S. Jain, A. K. Mishra,
S. P. Vyas and K. C Gupta, Gene expression, biodistribution
and pharmacoscintigraphic evaluation of chondroitin sulfate–PEI
nanoconstructs mediated tumor gene therapy, ACS Nano, 2009, 3,
1493–1505.
15 S. Patnaik, A. Aggarwal, S. Nimesh, A. Goel, M. Ganguli,
N. Saini, Y. Singh and K. C. Gupta, PEI-alginate nanocomposites
as efficient in vitro gene transfection agents, J. Controlled Release,
2006, 114, 398–409.
16 G. Borchard, Chitosans for gene delivery, Adv. Drug Delivery Rev.,
2001, 52, 145–150.
17 P. Midoux, C. Pichon, J. J. Yaouanc and P. A. Jaffres, Chemical
vectors for gene delivery: a current review on polymers, peptides
and lipids containing histidine or imidazole as nucleic acids
carriers, Br. J. Pharmacol., 2009, 157, 166–178.
18 O. Germershaus, G. Pickaert, J. Konrad, U. Kruger, T. Kissel and
R. Haag, Imidazole and dimethyl aminopropyl-functionalized
hyperbranched polymers for nucleic acid transfection, Macromol.
Biosci., 2010, 10, 1055–1062.
Acknowledgements
Authors are thankful to Dr. Naresh Singh for his help in
CLSM experiments. Financial support from the DBT
(No. BT/PR8344/NNT/28/05/06) and CSIR (NWP-35) to
KCG and UGC-SRF (10-2(05)2006(i)-E.U.II) to RG is grate-
fully acknowledged.
19 A. Swami, A. Aggarwal, A. Pathak, S. Patnaik, P. Kumar,
Y. Singh and K. C. Gupta, Imidazolyl-PEI modified nanoparticles
for enhanced gene delivery, Int. J. Pharm., 2007, 335, 180–192.
20 A. Swami, R. Goyal, S. K. Tripathi, N. Singh, N. Katiyar,
A. K. Mishra and K. C. Gupta, Effect of homobifunctional
crosslinkers on nucleic acids delivery ability of PEI nanoparticles,
Int. J. Pharm., 2009, 374, 125–138.
References
1 A. Swami, R. Kurupati, A. Pathak, Y. Singh, P. Kumar and
K. C. Gupta, A unique and highly efficient non-viral DNA/siRNA
delivery system based on PEI-bisepoxide nanoparticles, Biochem.
Biophys. Res. Commun., 2007, 362, 835–841.
2 J. F. K. Latallo, A. U. Bielinska, J. Johnson, R. Spindler,
D. A. Tomalia and J. R. Baker, Efficient transfer of genetic
material into mammalian cells using Starburst polyamidoamine
dendrimers, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 4897–4902.
3 E. Wagner, M. Ogris and W. Zauner, Polylysine-based transfection
systems utilizing receptor-mediated delivery, Adv. Drug Delivery
Rev., 1998, 30, 97–113.
4 O. Boussif, F. Lenzoualch, M. A. Zanta, M. D. Mergny,
D. Scherman, B. Demeneix and J. P. Behr, A versatile vector for
gene and oligonucleotide transfer into cells in culture and in vivo:
polyethylenimine, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 7297–7301.
5 I. M. Verma and S. Nikunj, Gene therapy – promises, problems
and prospects, Nature, 1997, 389, 239–242.
6 W. T. Godbey, K. K. Wu, G. J. Hirasaki and A. G. Mikos,
Improved packing of poly(ethylenimine)/DNA complexes
increases transfection efficiency, Gene Ther., 1999, 6, 1380–1388.
7 J. S. Remy, B. Abdallah, M. A. Zanta, O. Boussif, J.-P. Behr and
B. Demeneix, Gene transfer with lipospermines and polyethyl-
enimines, Adv. Drug Delivery Rev., 1998, 30, 85–95.
8 W. T. Godbey, K. K. Wu and A. G. Mikos, Poly(ethylenimine) and
its role in gene therapy, J. Controlled Release, 1999, 60, 149–160.
9 X. Gao and D. Liu, Selective chemical modification on polyethyl-
enimine and its effects on transfection efficiency and cytotoxicity,
Mol. Ther., 2005, 11, S427–S428.
21 B. Demeneix and J. P. Behr, Polyethylenimine (PEI), Adv. Genet.,
2005, 53PA, 215–230.
22 A. Akinc, M. Thomas, A. M. Klibanov and R. Langer, Exploring
polyethylenimine-mediated DNA transfection and the proton
sponge hypothesis, J. Gene Med., 2005, 7, 657–663.
23 K. N. Ganesh and M. Sastry, DNA–amine interactions: from
monolayers to nanoparticles, J. Indian Inst. Sci., 2002, 82, 105–112.
24 V. Vijayanathan and T. J. Thomas, DNA nanoparticles and
development of DNA delivery vehicles for gene therapy, Biochemistry,
2002, 41, 14085–14094.
25 W. T. Godbey, K. K. Wu and A. G. Mikos, Tracking the
intracellular path of poly(ethylenimine)/DNA complexes for gene
delivery, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 5177–5181.
26 J. H. Jeong, H. Mok, Y. K. Oh and T. G. Park, siRNA conjugate
delivery systems, Bioconjugate Chem., 2009, 20, 5–14.
27 S. Akhtar and F. I. Benter, Nonviral delivery of synthetic siRNAs
in vivo, J. Clin. Invest., 2007, 117, 3623–3632.
28 D. Lechardeur, K. J. Sohn, M. Haardt, P. B. Joshi, M. Monck,
R. W. Graham, B. Beatty, J. Squire, H. O’Brodovich and
G. L. Lukacs, Metabolic instability of plasmid DNA in the cytosol:
a potential barrier to gene transfer, Gene Ther., 1999, 6, 482–497.
29 J. F. Milligan and O. C. Uhlenbeck, Synthesis of small RNAs using
T7 RNA polymerase, Methods Enzymol., 1989, 180, 51–62.
30 W. C. Tseng, C. H. Tang and T. Y. Fang, The role of dextran
conjugation in transfection mediated by dextran-grafted polyethyl-
enimine, J. Gene Med., 2004, 6, 895–905.
10 F. P. Seib, A. T. Jones and R. Duncan, Comparison of the
endocytic properties of linear and branched PEIs, and cationic
c
This journal is The Royal Society of Chemistry 2011
Mol. BioSyst., 2011, 7, 2055–2065 2065