10.1002/anie.201901592
Angewandte Chemie International Edition
COMMUNICATION
[5]
(a) B. G. G. Lohmeijer, R. C. Pratt, F. Leibfarth, J. W. Logan, D. A.
Long, A. P. Dove, F. Nederberg, J. Choi, C. Wade, R. M.
Waymouth, J. L. Hedrick, Macromolecules 2006, 39, 8574-8583;
(b) R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R. M. Waymouth, J.
L. Hedrick, J. Am. Chem. Soc. 2006, 128, 4556-4557.
(a) L. Zhang, F. Nederberg, J. M. Messman, R. C. Pratt, J. L.
Hedrick, C. G. Wade, J. Am. Chem. Soc. 2007, 129, 12610-12611;
(b) L. Zhang, F. Nederberg, R. C. Pratt, R. M. Waymouth, J. L.
Hedrick, C. G. Wade, Macromolecules 2007, 40, 4154-4158.
(a) A. P. Dove, H. Li, R. C. Pratt, B. G. G. Lohmeijer, D. A. Culkin,
R. M. Waymouth, J. L. Hedrick, Chem. Commun. 2006, 2881-
2883; (b) M. Fevre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton,
Chem. Soc. Rev. 2013, 42, 2142-2172.
J. Williams, J. Am. Chem. Soc. 1998, 120, 11932-11942; (b) N.-C.
Chen, P.-Y. Huang, C.-C. Lai, Y.-H. Liu, Y. Wang, S.-M. Peng, S.-
H. Chiu, Chem. Commun. 2007, 4122-4124; (c) C.-F. Lin, C.-C. Lai,
Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Chem. Eur. J. 2007, 13, 4350-
4355.
To determine the Ka of lactide with the thiourea and triazole
functionalities of 1 and 2, respectively, without the interference of
the shuttling macrocycle along the axle, 1H NMR titrations were
performed using 1 and 2 in d8-THF (see Section S4.2, SI for
details). When analogous titrations with rac-lactide were performed
using neutral 1, the preferential occupancy of the thiourea site by
the crown ether macrocycle results in shifts of the thiourea protons
which were too small for accurate Ka values to be obtained.
[6]
[7]
[28]
[8]
[9]
M. J. Stanford, A. P. Dove, Chem. Soc. Rev. 2010, 39, 486-494.
K. Makiguchi, T. Yamanaka, T. Kakuchi, M. Terada, T. Satoh,
Chem. Commun. 2014, 50, 2883-2885.
[10]
A. Sanchez-Sanchez, I. Rivilla, M. Agirre, A. Basterretxea, A.
Etxeberria, A. Veloso, H. Sardon, D. Mecerreyes, F. P. Cossío, J.
Am. Chem. Soc. 2017, 139, 4805-4814.
[11]
[12]
J.-B. Zhu, E. Y. X. Chen, J. Am. Chem. Soc. 2015, 137, 12506-
12509.
(a) C. Bakewell, T.-P.-A. Cao, N. Long, X. F. Le Goff, A. Auffrant,
C. K. Williams, J. Am. Chem. Soc. 2012, 134, 20577-20580; (b) C.
Bakewell, J. P. White Andrew, J. Long Nicholas, K. Williams
Charlotte, Angew. Chem. Int. Ed. 2014, 53, 9226-9230; (c) D.
Myers, J. P. White Andrew, M. Forsyth Craig, M. Bown, K. Williams
Charlotte, Angew. Chem. Int. Ed. 2017, 56, 5277-5282; (d) N.
Nomura, R. Ishii, Y. Yamamoto, T. Kondo, Chem. Eur. J. 2007, 13,
4433-4451.
[13]
[14]
[15]
H. Ma, P. Spaniol Thomas, J. Okuda, Angew. Chem. Int. Ed. 2006,
45, 7818-7821.
P. Daneshmand, A. van der Est, F. Schaper, ACS Catalysis 2017,
7, 6289-6301.
(a) T. Barendt, A. Docker, I. Marques, V. Félix, D. Beer Paul,
Angew. Chem. Int. Ed. 2016, 55, 11069-11076; (b) C. G. Collins, E.
M. Peck, P. J. Kramer, B. D. Smith, Chem. Sci. 2013, 4, 2557-
2563; (c) S.-Y. Hsueh, C.-C. Lai, S.-H. Chiu, Chem. Eur. J. 2010,
16, 2997-3000; (d) M. V. R. Raju, H.-C. Lin, Org. Lett. 2013, 15,
1274-1277.
[16]
(a) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L.
Nussbaumer, Chem. Rev. 2015, 115, 10081-10206; (b) S. Kassem,
T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A.
Leigh, Chem. Soc. Rev. 2017, 46, 2592-2621; (c) R. Kay Euan, A.
Leigh David, Angew. Chem. Int. Ed. 2015, 54, 10080-10088.
(a) J. Beswick, V. Blanco, G. De Bo, D. A. Leigh, U. Lewandowska,
B. Lewandowski, K. Mishiro, Chem. Sci. 2015, 6, 140-143; (b) M.
Galli, E. M. Lewis James, M. Goldup Stephen, Angew. Chem. Int.
Ed. 2015, 54, 13545-13549.
(a) G. De Bo, M. A. Y. Gall, M. O. Kitching, S. Kuschel, D. A. Leigh,
D. J. Tetlow, J. W. Ward, J. Am. Chem. Soc. 2017, 139, 10875-
10879; (b) B. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer,
S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S.
M. Goldup, D. M. D’Souza, A. E. Fernandes, D. A. Leigh, Science
2013, 339, 189.
[17]
[18]
[19]
[20]
(a) S. J. Cantrill, D. A. Fulton, M. C. T. Fyfe, J. F. Stoddart, A. J. P.
White, D. J. Williams, Tet. Lett. 1999, 40, 3669-3672; (b) H.
Kawasaki, N. Kihara, T. Takata, Chem. Lett. 1999, 28, 1015-1016;
(c) Y. Tachibana, H. Kawasaki, N. Kihara, T. Takata, J. Org. Chem.
2006, 71, 5093-5104.
(a) N. Nomura, R. Ishii, M. Akakura, K. Aoi, J. Am. Chem. Soc.
2002, 124, 5938-5939; (b) M. Ovitt Tina, W. Coates Geoffrey, J.
Polym. Sci. Part A 2000, 38, 4686-4692.
[21]
[22]
[23]
The rotaxane C2-symmetry negates mechanical chirality which
could give rise to an enantiomorphic site control mechanism
Z. Kan, W. Luo, T. Shi, C. Wei, B. Han, D. Zheng, S. Liu, Front.
Chem. 2018, 6, 547.
(a) A. Alaaeddine, C. M. Thomas, T. Roisnel, J.-F. Carpentier,
Organometallics 2009, 28, 1469-1475; (b) A. J. Chmura, M. G.
Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P.
Khunkamchoo, S. L. Roberts, S. S. F. Wong, Macromolecules
2006, 39, 7250-7257; (c) X. Pang, X. Chen, H. Du, X. Wang, X.
Jing, J. Organomet. Chem. 2007, 692, 5605-5613; (d) J. Xiong, J.
Zhang, Y. Sun, Z. Dai, X. Pan, J. Wu, Inorg. Chem. 2015, 54,
1737-1743.
[24]
[25]
J. Baran, A. Duda, A. Kowalski, R. Szymanski, S. Penczek,
Macromol. Rapid. Commun. 2003, 18, 325-333.
J. Coudane, C. Ustariz-Peyret, G. Schwach, M. Vert, J. Polym. Sci.
A Polym. Chem. 2000, 35, 1651-1658.
[26]
[27]
K. Nakazono, S. Kuwata, T. Takata, Tet. Lett. 2008, 49, 2397-2401.
(a) P. R. Ashton, R. Ballardini, V. Balzani, I. Baxter, A. Credi, M. C.
T. Fyfe, M. T. Gandolfi, M. Gómez-López, M. V. Martínez-Díaz, A.
Piersanti, N. Spencer, J. F. Stoddart, M. Venturi, A. J. P. White, D.
This article is protected by copyright. All rights reserved.