C O M M U N I C A T I O N S
Scheme 2. Azepine Annulation and Selective Alkene Reductiona
In conclusion, the pentacyclic Stemona alkaloid tuberostemonine
was prepared in 24 steps and 1.4% overall yield from bicycle 2,
which is readily obtained in three steps from Cbz-L-tyrosine and
has served as a key building block for other alkaloid syntheses.4b,19
Among the highlights of our approach are the 3-fold use of
ruthenium catalysts, first in an azepine ring-closing metathesis and
then in the alkene isomerization and cross-metathesis propenyl-
vinyl exchange, as well as the stereoselective attachment of the
γ-butyrolactone to the core tetracycle by use of the lithiated ortho
ester 14.
Acknowledgment. This work was supported by a grant from
the National Institutes of Health (AI-33506).
a (a) 9, CH2Cl2 reflux (92%); (b) PhSH, NEt3, CH2Cl2 (91%); (c)
(PPh3)3RhCl, H2, EtOH/CH2Cl2, room temperature; (d) DBU, CH2Cl2, room
temperature (89%); (e) CeCl3‚7H2O, NaBH4, THF/MeOH, 0 °C (71%); (f)
TBDMS-Cl, imidazole, DMAP, CH2Cl2, room temperature (79%).
Supporting Information Available: Experimental procedures and
characterization data for 3, 16, and 1 and 1D and 2D NMR spectra for
1. This material is available free of charge via the Internet at http://
pubs.acs.org.
Scheme 3. Butyrolactone Attachmenta
References
(1) Pilli, R. A.; Ferreira de Oliveira, M. C. Nat. Prod. Rep. 2000, 17, 117-
127.
(2) (a) Uyeo, S.; Harada, H.; Irie, H.; Masaki, N.; Osaki, K. Chem. Commun.
1967, 460-462. (b) Goetz, M.; Boegri, T.; Gray, A. H.; Strunz, G. M.
Tetrahedron 1968, 24, 2631-2643.
(3) (a) Brem, B.; Seger, C.; Pacher, P.; Hofer, O.; Vajrodaya, S.; Greger, H.
J. Agric. Food Chem. 2002, 50, 6383-6388. (b) Maruyama, M.; Takeda,
K. Comp. Biochem. Physiol., C: Pharmacol., Toxicol. Endocrinol. 1994,
107C, 105-110.
(4) Stenine: (a) Hart, D. J.; Chen, C. J. J. Org. Chem. 1993, 58, 3840-
3849. (b) Wipf, P.; Kim, Y.; Goldstein, D. M. J. Am. Chem. Soc. 1995,
117, 11106-11112. (c) Morimoto, Y.; Iwahashi, M.; Kinoshita, T.;
Nishida, K. Chem. Eur. J. 2001, 7, 4107-4116. (d) Ginn, J. D.; Padwa,
A. Org. Lett. 2002, 4, 1515-1517. Croomine: (e) Williams, D. R.; Brown,
D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923-1925. (f)
Martin, S. F.; Barr, K. J.; Smith, D. W.; Bur, S. K. J. Am. Chem. Soc.
1999, 121, 6990-6997. Stemoamide: (g) Williams, D. R.; Reddy, J. P.;
Amato, G. S. Tetrahedron Lett. 1994, 35, 6417-6420. (h) Mori, M.;
Kinoshita, A. J. Org. Chem. 1996, 61, 8356-8357. (i) Kohno, Y.;
Narasaka, K. Bull. Chem. Soc. Jpn. 1996, 69, 2063-2070. (j) Jacobi, P.
A.; Lee, K. J. Am. Chem. Soc. 2000, 122, 4295-4303. (k) Gurjar, M. K.;
Reddy, D. S. Tetrahedron Lett. 2002, 43, 295-298. Isostemofoline: (l)
Kende, A. S.; Smalley, T. L.; Huang, H. J. Am. Chem. Soc. 1999, 121,
7431-7432. Stemonamide and isostemonamide: (m) Kende, A. S.;
Hernando, J. I. M.; Milbank, J. B. J. Tetrahedron 2002, 58, 61-74.
Stemospironine: (n) Williams, D. R.; Fromhold, M. G.; Earley, J. D. Org.
Lett. 2001, 3, 2721-2724.
a (a) (Me)(OMe)NH‚HCl, Me2AlCl, CH2Cl2, room temperature (94%);
(b) 14, LiDBB; then 13 (95%); (c) L-Selectride, THF, -78 °C (80%); (c)
TsOH, MeOH (70%).
Scheme 4. Completion of Total Synthesisa
(5) Wipf, P.; Kim, Y. Tetrahedron Lett. 1992, 33, 5477-5480.
(6) Goldstein, D. M.; Wipf, P. Tetrahedron Lett. 1996, 37, 739-742.
(7) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(8) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
(9) (a) Wipf, P.; Tsuchimoto, T.; Takahashi, H. Pure Appl. Chem. 1999, 71,
415-421. (b) Wipf, P.; Xu, W.; Kim, H.; Takahashi, H. Tetrahedron 1997,
53, 16575-16596.
(10) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 45, 1924-1930.
(11) Wick, A. E.; Felix, D.; Steen, K. Eschenmoser, A. HelV. Chim. Acta 1964,
47, 2425-2430.
(12) Wipf, P. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I.,
Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5; pp 827-874.
(13) Petragnani, N.; Stefani, H. A.; Valduga, C. J. Tetrahedron 2001, 57, 1411-
1448.
(14) Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829-5831.
(15) Hu, Y.-J.; Dominique, R.; Das, K. S.; Roy, R. Can. J. Chem. 2000, 78,
838-845.
a (a) N,N-Dimethylacetamide dimethyl acetal, xylenes, 135 °C (78%);
(b) PhSeCl, MeCN/H2O, 0 °C (67%); (c) AIBN, allyltriphenyltin (neat) 95
°C (70%); (d) LDA, HMPA, THF, -78 °C; MeI (76%, based on rec’d
sm); (e) 9, allyltritylamine, DIEA, toluene, 110 °C (85%); (f) TsOH, 23,
CH2Cl2 reflux, ethylene (81%); (g) Pd/C, H2 (1 atm), MeOH, (97%).
(16) (a) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973-
9976. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 8168-8179.
(17) Wright, D. L.; Schulte, J. P.; Page, M. A. Org. Lett. 2000, 2, 1847-
1850.
(18) This sequence allowed isolation of 1 after filtration of the reaction mixture
through a plug of Celite. The natural product readily oxidizes upon
chromatography and storage at ambient temperature.2b The structure of
synthetic 1 was confirmed by 1D and 2D NMR experiments, and its [R]D
-29.4 (c 0.10, acetone, 21 °C) compared well to the literature value ([R]D
-25.4 (c 0.06, acetone, 21 °C); Lin, W.-H.; Ye, Y.; Xu, R.-S. J. Nat.
Prod. 1992, 55, 571-576).
(19) (a) Wipf, P.; Methot, J.-L. Org. Lett. 2000, 2, 4213-4216. (b) Wipf, P.;
Mareska, D. A. Tetrahedron Lett. 2000, 41, 4723-4727. (c) Wipf, P.;
Li, W. J. Org. Chem. 1999, 64, 4576-4577.
were able to accomplish a novel sequence by first isomerizing the
allyl group using a modification of a method developed by Roy et
al. for allyl ethers,15 followed by ethylene cross-metathesis on 21
in the presence of Ru catalyst 2316 and TsOH17 to access the desired
terminal vinyl group. Phosphine-free conditions were important to
avoid extensive chromatographic purification that led to decomposi-
tion. The first total synthesis of tuberostemonine was completed
by a catalytic hydrogenation over Pd on carbon.18
JA028603T
9
J. AM. CHEM. SOC. VOL. 124, NO. 50, 2002 14849