the first monomeric isopropyllithium structure, i-PrLiꢀ(R,R)-
TECDA (6), via the interesting, non-symmetrical aggregate
[(i-PrLi)3ꢀ(TEEDA)2] (5). These three adducts indicate the
influence of the ligand on the structure formation patterns
and thus of the reactivity of organolithium compounds.
Notes and references
1. (a) T. Stey and D. Stalke, in The Chemistry of
Organolithium Compounds, ed. Z Rappoport and I Marek, Wiley,
Chichester, 2004, pp. 47–120; (b) R. E. Mulvey, Chem. Soc. Rev.,
1998, 27, 339.
2. For reviews, see: (a) D. Hoppe and T. Hense, Angew. Chem., Int.
Ed. Engl., 1997, 36, 2282; (b) P. Beak, A. Basu, D. J. Gallagher,
Y. S. Park and S. Thayumanavan, Acc. Chem. Res., 1996, 29,
2283; (c) M. C. Whisler, S. MacNeil, V. Snieckus and P. Beak,
Angew. Chem., Int. Ed., 2004, 43, 2206.
3. For examples, see: (a) D. Hoppe, F. Hintze and P. Tebben, Angew.
Chem., Int. Ed. Engl., 1990, 29, 1422; (b) S. T. Kerrick and
P. Beak, J. Am. Chem. Soc., 1991, 113, 9708; (c) M. C. Whisler
and P. Beak, J. Org. Chem., 2003, 68, 1207; (d) I. Coldham, R. C.
B. Copley, T. F. N. Haxell and S. Howard, Org. Biomol. Chem.,
2003, 1, 1532; (e) C. Metallinos, H. Szillat, N. J. Taylor and
V. Snieckus, Adv. Synth. Catal., 2003, 345, 370;
Fig. 5 (left) Molecular structure of i-PrLiꢀ(R,R)-TECDA (6) in the
crystal. Selected bond lengths (A) and angles (1): C(15)–Li 2.099(5),
Li–N(1) 2.073(5), Li–N(2) 2.115(5); N(1)–Li–C(15) 134.0(2),
C(15)–Li–N(2) 138.7(2), N(1)–Li–N(2) 86.8(2); (right) Connolly sur-
(f) E.-U. Wurthwein, K. Behrens and D. Hoppe, Chem.–Eur. J.,
¨
1999, 5, 3459; (g) K. B. Wiberg and W. F. Bailey, Tetrahedron
Lett., 2000, 41, 9365; (h) P. H. Martinz, K. C. Hueltzsch and
F. Hampel, Chem. Commun., 2006, 2221.
face mapped with the electrostatic potential [Vmax = 0.131; Vmin
=
ꢁ0.126] of both sides of compound 6 [B3LYP/6-31+G(d) probe
4. C. Strohmann and V. H. Gessner, J. Am. Chem. Soc., 2007, 129,
8952.
radius, 1.2 A].
5. Examples
of
dimeric
organolithium
compounds:
(a) M. A. Nichols and P. G. Williard, J. Am. Chem. Soc., 1993,
115, 1568; (b) C. Strohmann, K. Strohfeldt and D. Schildbach,
J. Am. Chem. Soc., 2003, 125, 13672; (c) C. Strohmann,
K. Strohfeldt, D. Schildbach, M. J. McGrath and P. O’Brien,
Organometallics, 2004, 23, 5389; (d) C. Strohmann, S. Dilsky and
K. Strohfeldt, Organometallics, 2006, 25, 41; (e) C. Strohmann
and V. H. Gessner, Angew. Chem., 2007, 119, 4650;
(f) C. Strohmann and V. H. Gessner, Angew. Chem., Int. Ed.,
2007, 46, 4566.
6. Further molecular structures with three lithium centres:
(a) B. Walfort, R. Bertermann and D. Stalke, Chem.–Eur. J.,
Fig. 6 Drawing of monomeric i-PrLiꢀ(R,R)-TECDA and illustration
of the repulsion between the cyclohexane ring and the ethyl groups in a
hypothetical dimer or aggregate.
2001, 7, 1424; (b) A. Furstner, H. Krause and C. W. Lehmann,
¨
¨
Angew. Chem., 2006, 118, 454; A. Furstner, H. Krause and
C. W. Lehmann, Angew. Chem., Int. Ed., 2006, 45, 440;
(c) A. Antinolo, C. Huertas, I. del Hierro, M. F. Lappert,
A. Otero, S. Prashar, A. M. Rodriguez and E. Villasenor, Orga-
nometallics, 1998, 17, 5874; (d) T. Gebauer, K. Dehnicke,
H. Goesmann and D. Fenske, Z. Naturforsch., B: Chem. Sci.,
1994, 49, 1444.
arises why (R,R)-TECDA forms a monomer and TEEDA an
aggregate with i-PrLi. This can be explained by both crystal
structures. In [(i-PrLi)3ꢀ(TEEDA)2] (5), one ethyl group of
each nitrogen atom is arranged in the direction of the iso-
propyllithium molecules and one towards the ligand. By
contrast, in the monomeric i-PrLiꢀ(R,R)-TECDA no ethyl
group is directed towards the cyclohexane ring of (R,R)-
TECDA. Such an arrangement would lead to strong repulsion
between the ethyl groups and the axial hydrogen atoms of the
ring. Therefore, all ethyl groups are arranged towards the
i-PrLi molecule (Fig. 6), thus preventing the formation of a
hypothetic dimer [i-PrLiꢀ(R,R)-TECDA]2 or an analogous
structure to 5. This is confirmed by DFT studies [B3LYP/
6-31+G(d)] showing no stationary point for the dimer and an
opening of an analogous structure to 5. Consequently, for
steric reasons (R,R)-TECDA and i-PrLi can only form a
monomeric structure.
7. M. J. Frisch et al., GAUSSIAN 03 (Revision D.01), see ESIw.
8. C. Strohmann, T. Seibel and K. Strohfeldt, Angew. Chem., 2003,
115, 4669; C. Strohmann, T. Seibel and K. Strohfeldt, Angew.
Chem., Int. Ed., 2003, 42, 4531.
9. C. Strohmann and V. H Gessner, Angew. Chem., 2007, 119, 8429;
C. Strohmann and V. H. Gessner, Angew. Chem., Int. Ed., 2007,
46, 8281.
10. Examples of further monomeric organolithium compounds:
(a) U. Schumann, J. Kopf and E. Weiss, Angew. Chem., Int. Ed.
¨
Engl., 1985, 24, 215; (b) J. Arnold, V. Knapp, J. A. R. Schmidt and
A. Shafir, J. Chem. Soc., Dalton Trans., 2002, 3273; (c) W. Zarges,
M. Marsch, K. Harms and G. Boche, Chem. Ber., 1989, 122, 2303;
(d) C. Strohmann, T. Seibel and D. Schildbach, J. Am. Chem.
Soc., 2004, 126, 9876.
11. (a) S. T. Chadwick, R. A. Rennels, J. L. Rutherford and
D. B. Collum, J. Am. Chem. Soc., 2000, 122, 8640;
(b) S. T. Chadwick, A. Ramirez, L. Gupta and D. B. Collum,
J. Am. Chem. Soc., 2007, 129, 2259; (c) P. G. Williard and
Q.-Y. Liu, J. Am. Chem. Soc., 1993, 115, 3380; (d) M. Eiermann
and K. Hafner, J. Am. Chem. Soc., 1992, 114, 135;
(e) D. B. Collum, A. J. McNeil and A. Ramirez, Angew. Chem.,
Int. Ed., 2007, 46, 3002.
In summary, we have presented molecular structures of
isopropyllithium with three nitrogen ligands. The different
steric demand of these Lewis bases leads to a change in the
degree of aggregation from the dimeric TMEDA adduct (4) to
ꢂc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3381–3383 | 3383