Published on Web 09/11/2003
Asymmetric, Stereocontrolled Total Synthesis of
Paraherquamide A
Robert M. Williams,* Jianhua Cao, Hidekazu Tsujishima, and Rhona J. Cox
Contribution from the Department of Chemistry, Colorado State UniVersity,
Fort Collins, Colorado 80523
Received June 16, 2003; E-mail: rmw@chem.colostate.edu
Abstract: The first total synthesis of paraherquamide A, a potent anthelmintic agent isolated from various
Penicillium sp. with promising activity against drug-resistant intestinal parasites, is reported. Key steps in
this asymmetric, stereocontrolled total synthesis include a new enantioselective synthesis of R-alkylated-
â-hydroxyproline derivatives to access the substituted proline nucleus and a highly diastereoselective
intramolecular SN2′ cyclization to generate the core bicyclo[2.2.2]diazaoctane ring system.
Introduction
than a spiro-oxindole, and the asperparalines, which contain a
spiro-succinimide,11 are also structurally comparable (Figure 1).
The paraherquamides1-4 are an unusual family of fungal
natural products which contain a bicyclo[2.2.2]diazaoctane core
structure, a spiro-oxindole, and a substituted proline moiety.
The parent member, paraherquamide A (1), was first isolated
from cultures of Penicillium paraherquei by Yamazaki and co-
workers in 1981.1 Since then, paraherquamides B-G,2 VM55595,
VM55596, and VM55597,3 SB203105 and SB200437,4 and
sclerotamide5 have been isolated from various Penicillium and
Aspergillus species. Marcfortines A-C are structurally similar,
containing a pipecolic acid unit in place of proline.6 Also closely
related are VM55599,3 aspergamides A and B,7 avrainvillamide
(CJ-17,665),8 and the most recently isolated members of this
family, stephacidins A and B .9 These last six compounds
contain a 2,3-disubstituted indole in place of the spiro-oxindole.
Brevianamides A and B,10 which contain a spiro-indoxyl rather
The paraherquamides have attracted considerable attention
due to their molecular complexity, intriguing biogenesis,12,13 and
biological activity. Some members, most notably paraherqua-
mide A, display potent anthelmintic activity and antinematodal
properties.14 Due to the appearance of drug resistance developed
by helminths, broad spectrum anthelmintic agents such as the
macrolide endectocides, benzimidazoles, tetrahydropyrimidines,
and imidazothiazoles are beginning to lose efficacy and there
has arisen an urgent need to discover new families of antipara-
sitic agents. The paraherquamides represent an entirely new
structural class of anthelmintic compounds, and as such, they
hold great potential as drugs for the treatment of intestinal para-
sites in animals.15 The mode of action of the paraherquamides
is, as yet, incompletely characterized, but recent work suggests
that they are selective competitive cholinergic antagonists.16
(1) Yamazaki, M.; Okuyama E.; Kobayashi, M.; Inoue, H. Tetrahedron Lett.
1981, 22, 135-136.
(11) (a) Hayashi, H.; Nishimoto, Y.; Nozaki, H. Tetrahedron Lett. 1997, 38,
5655-5658. (b) Hayashi, H.; Nishimoto, Y.; Akiyama, K.; Nozaki, H.
Biosci. Biotechnol. Biochem. 2000, 64, 111-115.
(2) (a) Ondeyka, J. G.; Goegelman, R. T.; Schaeffer, J. M.; Kelemen, L.; Zitano,
L. J. Antibiot. 1990, 43, 1375-1379. (b) Liesch, J. M.; Wichmann, C. F.
J. Antibiot. 1990, 43, 1380-1386. (c) Blanchflower, S. E.; Banks, R. M.;
Everett, J. R.; Manger, B. R.; Reading, C. J. Antibiot. 1991, 44, 492-497.
(3) Blanchflower, S. E.; Banks, R. M.; Everett, J. R.; Reading, C. J. Antibiot.
1993, 46, 1355-1363.
(12) (a) Porter, A. E. A.; Sammes, P. G. J. Chem. Soc., Chem. Commun. 1970,
1103. (b) Baldas, J.; Birch, A. J.; Russell, R. A. J. Chem. Soc., Perkin
Trans. 1 1974, 50-52. (c) Birch, A. J. J. Agric. Food Chem. 1971, 19,
1088-1092. (d) Kuo, M. S.; Wiley, V. H.; Cialdella, J. I.; Yurek, D. A.;
Whaley, H. A.; Marshall, V. P. J. Antibiot. 1996, 49, 1006-1013.
(13) (a) Stocking, E. M.; Sanz-Cervera, J. F.; Williams, R. M.; Unkefer, C. J.
J. Am. Chem. Soc. 1996, 118, 7008-7009. (b) Williams, R. M.; Sanz-
Cervera, J. F.; Sanceno´n, F.; Marco, J. A.; Halligan, K. M. Bioorg. Med.
Chem. 1998, 6, 1233-1241. (c) Stocking, E. M.; Williams, R. M.; Sanz-
Cervera, J. F. J. Am. Chem. Soc. 2000, 122, 9089-9098. (d) Stocking, E.
M.; Martinez, R. A.; Silks, L. A.; Sanz-Cervera, J. F.; Williams, R. M. J.
Am. Chem. Soc. 2001, 123, 3391-3392. (e) Stocking, E. M.; Sanz-Cervera,
J. F.; Unkefer, C. J.; Williams, R. M. Tetrahedron 2001, 57, 5303-5320.
(f) Stocking, E. M.; Sanz-Cervera, J. F.; Williams, R. M. Angew. Chem.,
Int. Ed. 2001, 40, 1296-1298.
(4) Banks, R. M.; Blanchflower, S. E.; Everett, J. R.; Manger, B. R.; Reading,
C. J. Antibiot. 1997, 50, 840-846.
(5) Whyte, A. C.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Nat. Prod.
1996, 59, 1093-1095.
(6) (a) Polonsky, J.; Merrien, M.-A.; Prange´, T.; Pascard, C.; Moreau, S. J.
Chem. Soc., Chem. Commun. 1980, 601-602. (b) Prange´, T.; Billion, M.-
A.; Vuilhorgne, M.; Pascard, C.; Polonsky, J.; Moreau, S. Tetrahedron Lett.
1981, 22, 1977-1980.
(7) Fuchser, Jens. Beeinflussung der Sekundarstoffbildung bei Aspergillus
ochraceus durch Variation der Kulturbedingungen sowie Isolierung,
Strukturaufklarung und Biosynthese der neuen Naturstoffe. Ph.D. Thesis,
University of Go¨ttingen, Germany, 1995. K. Bielefeld Verlag: Friedland,
1996 (Prof. A. Zeeck).
(14) (a) Ostlind, D. A.; Mickle, W. G.; Ewanciw, D. V.; Andriuli, F. J.;
Campbell, W. C.; Hernandez, S.; Mochales, S.; Munguira, E. Res. Vet.
Sci. 1990, 48, 260-261. (b) Shoop, W. L.; Egerton, J. R.; Eary, C. H.;
Suhayda, D. J. Parasitol. 1990, 76, 349-351. (c) Shoop, W. L.; Eary, C.
H.; Michael, H. W.; Haines, H. W.; Seward, R. L. Vet. Parasitol. 1991,
40, 339-341. (d) Shoop, W. L.; Michael, B. F.; Haines, H. W.; Eary, C.
H. Vet. Parasitol. 1992, 43, 259-263. (e) Shoop, W. L.; Haines, H. W.;
Eary, C. H.; Michael, B. F. Am. J. Vet. Res. 1992, 53, 2032-2034. (f)
Schaeffer, J. M.; Blizzard, T. A.; Ondeyka, J.; Goegelman, R.; Sinclair, P.
J.; Mrozik, H. Biochem. Pharmacol. 1992, 43, 679-684. For a review,
see: (g) Geary, T. G.; Sangster, N. C.; Thompson, D. P. Vet. Parasitol.
1999, 84, 275-295.
(8) (a) Fenical, W.; Jensen, P. R.; Cheng, X. C. U.S. Patent 6,066,635, 2000.
(b) Sugie, Y.; Hirai, H.; Inagaki, T.; Ishiguro, M.; Kim, Y.-J.; Kojima, Y.;
Sakakibara, T.; Sakemi, S.; Sugiura, A.; Suzuki, Y.; Brennan, L.; Duignan,
J.; Huang, L. H.; Sutcliffe, J.; Kojima, N. J. Antibiot. 2001, 54, 911-916.
(9) Qian-Cutrone, J.; Huang, S.; Shu, Y.-Z.; Vyas, D.; Fairchild, C.; Menendez,
A.; Krampitz, K.; Dalterio, R.; Klohr, S. E.; Gao, Q. J. Am. Chem. Soc.
2002, 124, 14556-14557.
(10) (a) Birch, A. J.; Wright, J. J. J. Chem. Soc., Chem. Commun. 1969, 644-
645. (b) Birch, A. J.; Wright, J. J. Tetrahedron 1970, 26, 2329-2344. (c)
Birch, A. J.; Russell, R. A. Tetrahedron 1972, 28, 2999-3008.
9
12172
J. AM. CHEM. SOC. 2003, 125, 12172-12178
10.1021/ja036713+ CCC: $25.00 © 2003 American Chemical Society