Journal of the American Chemical Society
Page 4 of 5
(1) (a) Kim, W. R. Microbes Infect. 2002, 4, 1219. (b) Shepard, C. W.;
Finelli, L.; Alter, M. J. Lancet Infect. Dis. 2005, 5, 558. (c) Alter, M.
J.; KruszonꢀMoran, D.; Nainan, O. V.; McQuillan, G. M.; Gao, F.; Moꢀ
yer, L. A.; Kaslow, R. A.; Margolis, H. S. N. Engl. J. Med. 1999, 341,
556.
1
2
3
4
5
6
7
(2) Coburn, C. A.; Meinke, P. T.; Chang, W.; Fandozzi, C. M.; Graꢀ
ham, D. J.; Hu, B.; Huang, Q.; Kargman, S.; Kozlowski, J.; Liu, R.;
McCauley, J. A.; Nomeir, A. A.; Soll, R. M.; Vacca, J. P.; Wang, D.;
Wu, H.; Zhong, B.; Olsen, D. B.; Ludmerer, S. W. ChemMedChem
2013, 8, 1930.
(3) (a) Warriner, S. Category 4: Compounds with Two Carbon-
Heteroatom Bonds. In Science of Synthesis; Bellus, D., Ed.; Thieme:
Stuttgart, 2007, 30, 7. (b) Heys, L.; Moore, C. G.; Murphy, P. J. Chem.
Soc. Rev. 2000, 29, 57. (c) Coric, I.; Vellalath, S.; Muller, S.; Cheng,
X.; List, B. Top. Organomet. Chem. 2013, 44, 165. (d) Richter, A.; Koꢀ
cienski, P.; Raubo, P.; Davies, D. E. Anti-Cancer Drug Des. 1997, 12,
217.
(4) For chiral hemiaminal synthesis using using chiral phosphric acid
cataysts, see (a) Li, G.; Fronczek, F. R.; Antilla, J. C. J. Am. Chem. Soc.
2008, 130, 12216. (b) Vellalath, S.; Coric, I.; List, B. Angew. Chem.,
Int. Ed. 2010, 49, 9749. Other examples, see (c) Li, Tꢀz; Wang, Xꢀb;
Sha, F.; Wu, Xꢀy Tetrahedron 2013, 69, 7314. (d) Hashimoto, T.; Naꢀ
katsu, H.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135,
16010. (e) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew.
Chem., Int. Ed. 2012, 51, 9684.
(5) For Pdꢀcatalyzed addition of sulfonylꢀprotected homopropargylic
amines to alkoxyallene, see: (a) Kim, H.; Rhee, Y. H. Synlett 2012, 23,
2875. (b) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011.
(6) For a chiral relay strategy to elbasvir, see: (a) Mangion, I.; Chen, Cꢀ
y; Li, H.; Maligres, P.; Chen, Y.; Christensen, M.; Cohen, R.; Jeon, I.;
Klapars, A.; Krska, S.; Nguyen, H.; Reamer, R. A.; Sherry, B. D.; Zaꢀ
vialov, I. Org. Lett. 2014, 16, 2310. (b) Li, H.; Chen, Cꢀy; Nguyen, H.;
Cohen, R.; Maligres, P.; Yasuda, N.; Mangion, I.; Zavialov, I.;
Reibarkh, M.; Chung, J. J. Org. Chem. 2014, 79, 8533.
(7) For recent reviews on the BuchwaldꢀHartwig reaction, see: (a)
Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (b) Surry, D. S.; Buchꢀ
wald, S. L. Chem. Sci. 2011, 2, 27. (c) Bariwal, J.; Van der Eycken, E.
Chem. Soc. Rev. 2013, 42, 9283. For kinetic resolution by enantioselecꢀ
tive BuchwaldꢀHartwig reaction, see: (d) Rossen, K.; Pye, P.; Maliakal,
A.; Volante, R. P. J. Org. Chem. 1997, 62, 6462. (e) Tagashira, J.;
Imao, D.; Yamamoto, T.; Ohta, T.; Furukawa, I.; Ito, Y. Tetrahedron:
Asymmetry 2005, 16, 2307. For enantioselective synthesis of atropisoꢀ
meric lactams and anilides via BuchwaldꢀHartwig reaction, see: (f) Kitꢀ
agawa, O.; Kurihara, D.; Tanabe, H.; Shibuya, T.; Taguchi, T. Tet. Lett.
2008, 49, 471 and references cited therein. For desymetrization using
BuchwaldꢀHartwig conditions, see: (g) Porosa, L.; Viirre, R. Tetrahe-
dron Lett. 2009, 50, 4170. For desymmetrization via copperꢀcatalyzed
enantioselective intramolecular aryl C−N coupling see: (h) He, N.;
Huo, Y.; Lin, J.; Huang, Y.; Zhang, S.; Cai, Q. Org. Lett. 2015, 17,
374. (i) Shi, J.; Wang, T.; Huang, Y.; Zhang, X.; Wu, Y.; Cai. Q.; Org.
Lett. 2015, 17, 840 and references cited therein.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, we have developed an unprecedented approach to
the enantioselective synthesis of hemiaminals via a Pdꢀcatalyzed
CꢀN coupling using chiral bisphosphine monoꢀoxides. Essential to
this discovery was the observation that benzoxazine derivatives
such as 1a readily undergo racemization via the open form 1a’,
and this equilibration process could be terminated via entioselecꢀ
tive Pdꢀcatalyzed CꢀN coupling. Furthermore, we discovered that
an unexpected in-situ formation of a bisphosphine monoꢀoxide
from the bisphosphine by Pd(OAc)2 was a key step in the forꢀ
mation of the active catalyst necessary for CꢀN coupling. This
new approach was successfully applied to the highly efficient
synthesis of the HCV drug candidate, elbasvir, and the methodolꢀ
ogy has been successfully applied to the enantioselective syntheꢀ
sis of N,Nꢀacetals. Further applications of this methodology are
being investigated as well as mechanistic studies to identify the
enantioꢀ and rateꢀdetermining steps of this novel reaction.
ASSOCIATED CONTENT
Supporting Information
Full characterization, analysis of enantioselectivities, copies of all
spectral data, experimental procedures, and Xꢀray crystallographic
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Authors
(8) For recent reviews highlighting the utility of highꢀthroughput exꢀ
perimentation in academia and industry, see: (a) Schmink, J. R.; Belꢀ
lomo, A; Berritt, S. Aldrichim. Acta 2013, 46, 71ꢀ80. (b) Collins, K. D.;
Gensch, T.; Glorius, F. Nat. Chem. 2014, 6, 859.
Notes
The authors declare no competing financial interests.
(9) Treatment of 1a with KOBut afforded the corresponding Kꢀsalt of
open form 1a’. The ee of optically enriched 1a decreased from 96% to
2% within 30 mins in THF with K3PO4 at 50 ˚C. Alternatively, the ee
of optically enriched 1a decreased from 96% to 0% within 5 h in toluꢀ
ene with K3PO4 at 50 ˚C. In the absence of added base, the ee of optiꢀ
cally enriched 1a (96% ee) decreased to 11% and 0% ee respectively in
THF and toluene within 23 h at 50 ˚C.
ACKNOWLEDGMENT
We thank Ji Qi and Jing Li for the development of a general
method for the formation of diverse hemiaminal substrates 1,22 as
well as Wensong Xiao (Pharmaron Inc), Aaron Dumas and Edꢀ
ward Cleator for supporting starting material preparation. We
thank Andrew Brunskill, Alexei Buevich, Peter G. Dormer, Jinꢀ
chu Liu, Lisa Frey, RongꢀSheng Yang, Leonard Hargiss, and
Wilfredo Pinto for analytical and separations support. We also
thank Tetsuji Itoh, Kallol Basu, Yonggang Chen, Ian Davies,
Artis Klapars, Mark McLaughlin, Rebecca Ruck, and Professor
Stephen Buchwald (MIT) for additional experimental support and
very useful discussions. We thank Michele Mccolgan for graphic
design.
(10) For recent applications of highꢀthroughput experimentation see:
(a) Belyk, K. M.; Xiang, B.; Bulger, P. G.; Leonard, W. R., Jr.;
Balsells, J.; Yin, J.; Chen, C. Org. Process Res. Dev. 2010, 14, 692.
(b) Robbins, D. W.; Hartwig, J. F. Science 2011, 333, 1423.
(c) Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M.
T.; Chirik, P. J. Science 2013, 342, 1076. (d) Chung, C. K.; Bulger, P.
G.; Kosjek, B.; Belyk, K. M.; Rivera, N.; Scott, M. E.; Humphrey, G.;
Limanto, J.; Bachert, D. C.; Emerson, K. M. Org. Process Res.
Dev. 2014, 18, 215. (e) DiRocco, D. A.; Dykstra, K.; Krska, S.;
Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem. Int. Ed. 2014, 53,
4802.
REFERENCES
(11) Conversion is reported as the product of 100*[(area
counts 2a)/(area counts 1a + area counts 2a)] as determined by SFC
analysis at a wavelength of 210 nm.
ACS Paragon Plus Environment