Communications to the Editor
J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 3 667
discussion during the course of this work and J ohn
Katzenellenbogen (University of Illinois at Urbanas
Champaign) for critical reading of the manuscript.
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails and spectral and analytical data for the preparation of
the radioligand ([3H]-6) (2 pages). Ordering information is
given on any current masthead page.
Refer en ces
(1) Ferrannini, E. The Insulin Resistance Syndrome. Curr. Opin.
Nephrol. Hypertens. 1992, 1, 291-298.
F igu r e 2. Correlation of in vitro PPARγ activity with in vivo
antihyperglycemic activity in ob/ob mice for compounds 3 and
5-10. In vitro PPARγ EC50 from Table 1. In vivo minimum
effective dose (MED) for antihyperglycemic activity from ref
10a; r2 ) 0.92, P < 0.0005.
(2) (a) Warram, J . H.; Martin, B. C.; Krolewski, A. S.; Soeldner, J .
S.; Kahn, C. R. Slow Glucose Removal Rate and Hyperinsuline-
mia Precede the Development of Type II Diabetes in the
Offspring of Diabetic Parents. Ann. Intern. Med. 1990, 113, 909-
915. (b) Lillioja, S.; Mott, D. M.; Spraul, M.; Ferraro, R.; Foley,
J . E.; Ravussin, E.; Knowler, W. C.; Bennett, P. H.; Bogardus
C. Insulin Resistance and Insulin Secretory Dysfunction as
Precursors of Non-Insulin-Dependent Diabetes Mellitus: Pro-
spective Studies of Pima Indians. N. Engl. J . Med. 1993, 329,
1988-1992.
(3) Colca, J . R.; Tanis, S. P. Recent Advances in the Discovery and
Development of Potential Antidiabetic Agents. In Annual Re-
ports in Medicinal Chemistry; Bristol, J . A., Ed.; Academic Press
Inc.: San Diego, 1992; Vol. 27, pp 219-226.
(4) (a) Fujita, T.; Sugiyama, Y.; Taketomi, S.; Sohda, T.; Kawamatsu,
Y.; Iwatsuka, H.; Suzjoka, Z. Reduction of Insulin Resistance in
Obese and/or Diabetic Animals by 5-[4-(1-Methylcyclohexyl-
methoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287,
Ciglitazone), a New Antidiabetic Agent. Diabetes 1983, 32, 804-
810. (b) Chang, A. Y.; Wyse, B. M.; Gilchrist, B. J .; Peterson, T.;
Diani, A. R. Ciglitazone, a New Hypoglycemic Agent. Diabetes
1983, 32, 830-838. (c) Sugiyama, Y.; Taketomi, S.; Shimara, Y.;
Ikeda, H.; Fujita, T. Effects of Pioglitazone on Glucose and Lipid
Metabolism in Wistar Fatty Rats. Arzneim. Forsch./ Drug Res.
1990, 40, 263-267. (d) Stevenson, R. W., Hutson, N. J .; Krapp,
M. N.; Volkmann, R. A.; Holland, G. F.; Eggler, J . F.; Clark, D.
A.; McPherson, R. K.; Hall, K. L.; Danbury, B. H.; Gibbs, E. M.;
Krentler, D. K.; Actions of Novel Antidiabetic Agent Englitazone
in Hyperglycemic Hyperinsulinemic ob/ ob Mice. Diabetes 1990,
39, 1218-1227.
(5) Nolan, J . J .; Ludvik, B.; Beerdsen, P.; J oyce, M.; Olefsky, J .
Improvement in Glucose Tolerance and Insulin Resistance in
Obese Subjects Treated with Troglitazone. N. Engl. J . Med.
1994, 331, 1188-1193.
(6) (a) Ferrari, C.; Testori, G. P.; Betazzoni, A.; Romussi, M.;
Caldara, R.; Frezzati, S. Increased Glucose Disappearance Rate
after Short-term Clofibrate Administration in Normal Subjects
and in Patients with Chemical Diabetes. Horm. Metab. Res.
1978, 10, 4-6. (b) Barnett, D.; Craig, J . G.; Robinson, D. S.;
Perenna Rogers, M. Effect of Clofibrate on Glucose Tolerance
in Maturity Onset Diabetes. Br. J . Clin. Pharmacol. 1977, 4,
455-458.
(7) (a) Kawamatsu, Y.; Saraie, T.; Imamiya, E.; Nishikawa, K.;
Hamuro, Y. Studies on Antihyperlipidemic Agents. Arzneim.-
Forsch./ Drug Res. 1980, 30, 454-459. (b) Sohda, T.; Mizuno,
K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y.
Studies on Antidiabetic Agents. II. Synthesis of 5-[4-(1-Methyl-
cyclohexylmethoxy)benzyl]thiazolidine-2,4-dione (ADD-3878) and
its Derivatives. Chem. Pharm. Bull. 1982, 30, 3580-3600.
(8) Hulin, B. New Hypoglycemic Agents. Prog. Med. Chem. 1994,
31, 1-58.
Table 1 shows that compounds 1b, 2, 4, and 11 also
demonstrated PPARγ agonist activity. Compound 11
was reported to be inactive at 1000 µmol kg-1 in ob/ob
mice,10a and Figure 2 predicts that a dose of >10 000
µmol kg-1 would be required to show in vivo activity.
Thus, the in vitro PPARγ activity of 11 is consistent
with the reported in vivo data. Englitazone (4) was
reported to be active in ob/ob mice at doses comparable
to ciglitazone (3);11 however, differences in dosing
regimes (diet vs gavage) and duration of study (8 vs 4
d) did not allow inclusion of this compound in the
correlation.10,11 Finally, the activities of 1b and 2 have
not been reported in ob/ob mice, although 2 was reported
to lower blood glucose in diabetic KK-Ay mice at high
doses (0.2% of diet for 4 d).7a
Within a single compound class that is known to have
acceptable pharmacokinetic properties, it is likely that
differences in in vivo potency reflect changes in the
pharmacodynamic properties of the molecules. Thus,
the correlation between in vivo potency of compounds
3 and 5-10 and the measured in vitro activity impli-
cates PPARγ as the molecular target for the antidiabetic
effects of thiazolidinediones.18 PPARγ is predominantly
expressed in adipose tissue,19 and it was recently shown
that PPARγ, through ectopic expression, can act as a
master regulator of adipocyte differentiation in pre-
adipocyte and multipotential cell lines.14,20 Since skel-
etal muscle is the predominant insulin-sensitive tissue
in the body, accounting for >80% of the insulin-
regulated glucose disposal, an increase in glucose
disposal in adipocytes alone is unlikely to account for
the dramatic antihyperglycemic activity of the thiazoli-
dinediones. Thus, the mechanism by which activation
of PPARγ-regulated genes in adipocytes reverses insulin
resistance remains to be discovered.21
(9) Shoda, T.; Momose, Y.; Meguro, K.; Kawamatsu, Y.; Sugiyama,
Y.; Ikeda, H. Studies on Antidiabetic Agents: Synthesis and
Hypoglycemic Actvity of 5-[4-(Pyridylalkoxy)benzyl]-2,4-thiazoli-
dinediones. Arzneim.-Forsch./ Drug Res. 1990, 40, 37-42.
(10) (a) Cantello, B. C. C.; Cawthorne, M. A.; Cottam, G. P.; Duff, P.
T.; Haigh, D.; Hindley, R. M.; Lister, C. A.; Smith, S. A.; Thurlby,
P. L. [[ω-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinedi-
ones as Potent Antihyperglycemic Agents, J . Med. Chem. 1994,
37, 3977-3985. (b) Cantello, B. C. C.; Cawthorne, M. A.; Haigh,
D.; Hindley, R. M.; Smith, S. A.; Thurlby, P. L. The Synthesis
of BRL 49653 - a Novel and Potent Antihyperglycemic Agent.
Bioorg. Med. Chem. Lett. 1994, 10, 1181-1184.
Con clu sion . The structure-activity relationship for
PPARγ agonist activity in vitro accurately predicts the
in vivo antihyperglycemic activity of thiazolidinediones
in diabetic mice. The ability to rapidly screen com-
pounds against this target in radioligand competition-
binding and functional transactivation assays should
allow the rapid development of more potent and selec-
tive antidiabetic agents.
(11) Clark, D. A.; Goldstein, S. W.; Volkmann, R. A.; Eggler, J . F.;
Holland, G. F.; Hulin, B.; Stevenson, R. W.; Kreutter, D. K.;
Michael Gibbs, E.; Krupp, M. N.; Merrigan, P.; Kelbaugh, P. L.;
Andrews, E. G.; Tickner, D. L.; Suleske, R. T.; Lamphere, C. H.;
Ack n ow led gm en t. We thank Ken Batchelor, Stew-
art Noble, Steve Blanchard, and Bill Wilkison (Glaxo
Wellcome Research and Development) for support and