For 12: dH (300 MHz, CDCl3) 7.90 (2 H, d, J 8.5 Hz), 7.74 (2 H, d, J 8.5
Hz), 7.58 (2 H, d, J 8.5 Hz), 7.46 (2 H, d, J 8.5 Hz), 5.42 (1 H, m), 5.38 (1
H, m), 2.60 (1 H, dt, J 13.5, 7.5 Hz), 2.42 (1 H, ddd, J 16, 8.0, 5.0 Hz), 2.19
(1 H, br d, J 16 Hz), 2.0 (1 H, m), 1.3–1.8 (7 H, m), 0.92 (3 H, br t, J 7.0).
M+, 522.0048; C23H24O479Br2 requires M+, 522.0041.
state as it polymerised even in a solution during purification as
described,1 its 1H NMR spectrum measured directly [in
(CD3)2CO] was identical to that of the natural product.1
On the other hand, 11 was hydrogenated under medium-
pressure conditions in the presence of palladized carbon to
convert it into the mixture containing the stable perhydro
derivative of the natural product 1 as the major product. The
major product isolates as the di(4-bromobenzoate) 12, after
desilylation and 4-bromobenzoylation, had a circular dichroism
(CD) spectrum, showing the first Cotton effect (negative) at 251
nm and the second (positive) at 234 nm, which was identical to
that reported for 12 having the 1S,3S,4R configuration (negative
at 251 nm and positive at 231 nm) originated from the natural
product 1. This indicated the stereochemistry of sistodiolynne 1
to be 1R,3S as proposed.
References
1 A. K. Amegadzie, W. A. Ayer and L. Sigler, Can. J. Chem., 1995, 73,
2119.
2 T. Sugahara, Y. Kuroyanagi and K. Ogasawara, Synthesis, 1996,
1101.
3 A recent review for the chiral cyclopentenoid derivatives, see
K. Ogasawara, J. Synth. Org. Chem. Jpn., 1996, 54, 15.
4 B. M. Eschler, R. K. Haynes, M. D. Ironside, S. Kremmydas,
D. D. Riley and T. W. Hambley, J. Org. Chem., 1991, 56, 4760.
5 C. R. Johnson, P. A. Adams, M. P. Braun, C. B. W. Senanayake,
P. M. Wovkulich and M. R. Uskokovic, Tetrahedron Lett., 1992, 33,
1917.
6 A. L. Gemal and T. L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
7 K. Sonogashira, Y. Toda and N. Hagiwara, Tetrahedron Lett., 1975,
4467.
In summary, we could not isolate sistodiolynne 1 in a pure
form owing to its intrinsic instability, however, the present
synthesis verified the correctness of the proposed structure of
the natural product made by spectroscopic methods.
Footnotes
8 A more related example, see T. Kamikubo and K. Ogasawara, Chem.
Commun., 1996, 1679.
* E-mail: konol@mail.cc.tohoku.ac.jp
† Spectral (IR, 1H NMR, mass and analytical (combustion and/or high
resolution mass) data were obtained for all isolable compounds.
‡ Selected data for representative compounds. For 6: dH (300 MHz, CDCl3)
6.23 (1 H br s), 4.41 (2 H, m), 2.73 (1 H, dt, J 14, 7 Hz), 1.71 (1 H, dt, J 14,
5 Hz), 1.10 (9 H, s). For 11: dH (300 MHz, CDCl3) 6.36 (1 H, d, J 7.3 Hz),
6.12 (1 H, d, J 1.8 Hz), 5.98 (1 H, d, J 7.3 Hz), 5.05 (1 H, br s), 4.98 (1 H,
br s), 2.03 (2 H, m), 0.89 (9 H, s), 0.87 (9 H, s), 0.1 (6 H, s), 0.06 (6 H, s).
M+, 412.2017; C21H37O2Si235Cl requires M+, 412.2022. For 1: dH [300
MHz, (CD3)2CO] 6.32 (1 H, s), 4.65 (2 H, m), 4.46 (1 H, d, J 6.5 Hz), 4.17
(1 H, d, J 6.5 Hz), 3.27 (1 H, s), 2.70 (1 H, ddd, J 13.2, 7.3, 7.3 Hz), 1.45
(1 H, J 13.2, 6.0, 6.0 Hz). M+, 148.0494; C9H8O2 requires M+, 412.2022.
9 W. J. Scott, M. R. Pena, K. Sward, S. J. Stoessel and J. K. Stille, J. Org.
Chem., 1985, 50, 2302; E. J. Corey, M.-C. Kang, M. C. Desai,
A. K. Ghosh and I. N. Houpis, J. Am. Chem. Soc., 1988, 110, 649.
10 R. H. Schlessinger and R. A. Nugent, J. Am. Chem. Soc., 1982, 104,
1116.
11 A. S. Kende and C. A. Smith, J. Org. Chem., 1988, 53, 2655.
12 V. Ratovelomanana and G. Linstrumelle, Tetrahedron Lett., 1981, 22,
315.
Received in Cambridge, 8th January 1997; Com. 7/00186J
768
Chem. Commun., 1997