Page 9 of 11
Journal of the American Chemical Society
(10) (a) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328,
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Na-
katsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.,
Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; To-
masi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.
G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Dan-
iels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. (b) In general,
rotational barriers were derived from optimization of the stationary
points of a relaxed torsional potential energy scan of the N–CAr
anilide axis at the M06-2X/6-311++G(2d,3p)//B3LYP/6-
31+G(d,p) level.26 Frequency calculations were performed at the
B3LYP/6-31+G(d,p) level, and all transition states were found to
have one, single imaginary frequency corresponding to a vibration
along the N–CAr torsional reaction coordinate.
(26) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–
241. See also ref 11b.
(27) Reist, M.; Testa, B.; Carrupt, P.-A.; Jung, M.; Schurig, V.
Chirality 1995, 7, 396–400.
(28) Slow addition was accomplished using a syringe pump. We
found that using an 18 G needle avoided clogging via NBS precipita-
tion over the 2.5 h slow addition. The rate of addition (1.60 mLmin-
1), length of addition (2.5 h), and composition/volumes of delivery
(3.5 mL of 9:1 v/v PhMe/CHCl3 with 0.5 mL acetone additive, 4
mL total) and source (6 mL of 9:1 v/v PhMe/CHCl3) solutions were
rigorously optimized for the 0.10 mmol-scale reaction. Additional
details on the optimization of the reaction conditions may be found
in the Supporting Information.
(29) (a) McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron
1968, 24, 2289–2292. (ꢀ b) This reaction was performed on small-
scale, and isolated yield was not obtained following crystallization.
(30) Hirsch, J. A. Table of Conformational Energies. In Topics in
Stereochemistry; Allinger, N. L.; Eliel, E. L., Eds.; Wiley: Hoboken, NJ,
1967; Vol. 1, pp. 199–222.
(31) In the case of 2k, we hypothesized that the marked increase
in enantioselectivity to 99:1 er (relative to 97:3 er in 2a, correspond-
ing to ΔΔG‡ = 0.61 kcalmol-1 at 0 ºC) may be due to (1) the Me-
group being electron-releasing and thereby ring activating and (2)
the Me-group blocking the position of first bromination in the un-
catalyzed background reaction (see Mechanism-Driven Experiments
section). In that way, the catalyzed reaction outcompetes the back-
ground reaction significantly. In the case of 2m, ring activation of
the meta-Me-substituent provides an increase to 98:2 er relative to
the parent, but the background pathway is still possible via bromina-
tion at the para-position. The results obtained for Cl-substituted 2j
and 2l (both 96:4 er) might suggest that ring activation is important
to the er of the reaction. Steric effects may also be at play in these
instances.
1251–1255. (b) Garand, E.; Kamrath, M. Z.; Jordan, P. A.; Wolk,
A. B.; McCoy, A. B.; Miller, S. J.; Johnson, M. A. Science 2012, 335,
694–698.
(11) (a) Barrett, K. T.; Miller, S. J. J. Am. Chem. Soc. 2013, 135,
2963–2966. (b) Barrett, K. T.; Metrano, A. J.; Rablen, P. R.; Miller,
S. J. Nature 2014, 509, 71–75.
1
2
3
4
5
6
7
8
(12) Miyaji, R.; Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2015,
137, 6766–6769.
(13) For examples of methods providing access to enantioen-
riched 3-arylquinazolin-4(3H)-ones, please see: (a) Tokitoh, T.; Ko-
bayashi, T.; Nakada, E.; Inoue, T.; Yokoshima, S.; Takahashi, H.;
Natsugari, H. Heterocycles 2006, 70, 93–99. (b) Penhoat, M.; Bohn,
P.; Dupas, G.; Papamicaël, C.; Marsais, F.; Levacher, V. Tetrahedron:
Asymmetry 2006, 17, 281–286. (c) Dai, X.; Wong, A.; Virgil, S. C. J.
Org. Chem. 1998, 63, 2597–2600.
(14) (a) Azanli, E.; Rothchild, R.; Sapse, A.-M. Spectrosc. Lett.
2002, 35, 257–274. (b) Colebrook, L. D.; Giles, H. G. Can. J. Chem.
1975, 53, 3431–3434. (c) Mannschreck, A.; Kaller, H.; Stühler, G.;
Davies, M. A.; Traber, J. Eur. J. Med. Chem. Chim. Ther. 1984, 19,
381.
(15) The reaction solvent was rigorously optimized in the early
stages of this project. We found that 9:1 v/v PhMe/CHCl3 deliv-
ered higher enantioselectivities than pure PhMe, pure CHCl3, 9:1
v/v CHCl3/PhMe, and 9:1 v/v CHCl3/C6F6. Furthermore, the
concentration of the reaction (0.01 M) was also optimized at an
early stage. Dilution beyond 0.01 M served to decrease yield with no
effect on enantioselectivity. Concentrations greater than 0.01 M
provided lower er values, presumably due to an acceleration of the
background rate.
(16) For relevant reviews, see: (a) Miller, S. J. Acc. Chem. Res.
2004, 37, 601-610. (b) Jarvo, E. R.: Miller, S. J. Tetrahedron 2002,
58, 2481–2495. For recent examples of β-turn peptides in enantiose-
lective reactions, see: (c) Metrano, A. J.; Miller, S. J. J. Org. Chem.
2014, 79, 1542–1554. (d) Mbofana, C. T.; Miller, S. J. J Am. Chem.
Soc. 2014 136, 3285–3292. (e) Romney, D. K.; Miller, S. J. Org. Lett.
2012, 14, 1138–1141. (f) Peris, G.; Jakobsche, C. E.; Miller, S. J. J.
Am. Chem. Soc. 2007, 129, 8710–8711.
(17) The bromination of 1a in the absence of catalysts provides <
5% yield of tribromide 2a. The majority of 1a is converted to a
complex mixture of monobromides and dibromides, with the mon-
obromides being favored. Please consult the “Mechanism-Driven
Experiments” section and the Supporting Information for more
details. Dissolution of the starting materials is also poor when no
catalyst is present.
(18) Only enantioselectivities were measured in the peptide-
optimization studies summarized in Figure 2. Isolated yields were
not assessed on small scale. Conversion of 1a was always near quan-
titative by crude 1H-NMR.
(19) For examples of peptides taking advantage of a D-Pro-Aib β-
turn sequence, see: (a) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J.
A. Chem. Soc. 2010, 132, 2870–2871. (b) Cowen, B. J.; Saunders, L.
B.; Miller, S. J. J. Am. Chem. Soc. 2009, 131, 6105–6107. See also ref.
11.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res.
(32) (a) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth.
Catal. 2001, 343, 5–26. (b) Kagan, H. B.; Fiaud, J. C. Kinetic Reso-
lution. In Topics in Stereochemistry; Eliel, E. L.; Wilen, S. H., Eds.;
Wiley: Hoboken, NJ, 1988; Vol. 18, pp. 249–340.
(33) Based purely on rotational barriers, many previously studied
systems, including biaryls and benzamides, require two functionali-
zation events (one at each ortho-position) to lock the asymmetric axis.
See refs. 10–11.
2009, 42, 33–44.
(21) (a) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem.
Soc. 1996, 118, 6975–6985. (b) Wilmot, C. M.; Thornton, J. M. J.
Mol. Biol. 1988, 203, 221–232.
(22) Blank, J. T.; Miller, S. J. Biopolymers 2006, 84, 38–47.
(23) (a) Gellman, S. H.; Dado, G. P.; Liang, G.-B.; Adams, B. R.
J. Am. Chem. Soc. 1991, 113, 1164–1173. (b) Yang, D.; Zhang, D.-
W.; Hao, Y.; Wu, Y.-D.; Luo, S.-W.; Zhu, N.-Y. Angew. Chem. Int.
Ed. 2004, 116, 6887–6890. (c) Trabocchi, A.; Potenza, D.; Guarna,
A. Eur. J. Org. Chem. 2004, 4621–4627.
(24) CYLview was used to render the X-ray crystal data: CYL-
view, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009
(25) DFT computations were performed using the Gaussian 09
suite: (a) Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
(34) The NMR studies were performed in C6D6 to simulate the
bulk PhMe of the reaction conditions (Equation 2) without having
two residual solvent lines in the spectrum. Even though the catalytic
reaction is run at 0.001 M with respect to peptide 4q, we opted to
perform our NMR studies at 0.01 M to obtain better signal-to-noise.
We verified that 4q does not aggregate at 0.01 M solution by com-
1
paring H-NMR spectra of 4q at 0.001 M and 0.01 M under oth-
erwise identical conditions. No change was observed in the proton
9
ACS Paragon Plus Environment