Organic Letters
Letter
(10) (a) Zhang, C.; Vinogradova, E. V.; Spokoyny, A. M.; Buchwald,
S. L.; Pentelute, B. L. Arylation Chemistry for Bioconjugation. Angew.
Chem., Int. Ed. 2019, 58, 4810−4839. (b) Ohata, J.; Martin, S. C.;
Ball, Z. T. Metal-Mediated Functionalization of Natural Peptides and
Proteins: Panning for Bioconjugation Gold. Angew. Chem., Int. Ed.
2019, 58, 6176−6199.
(11) (a) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute,
B. L.; Buchwald, S. L. Organometallic Palladium Reagents for
Cysteine Bioconjugation. Nature 2015, 526, 687−691. (b) Rojas, A.
J.; Zhang, C.; Vinogradova, E. V.; Buchwald, N. H.; Reilly, J.;
Pentelute, B. L.; Buchwald, S. L. Divergent Unprotected Peptide
Macrocyclisation by Palladium-Mediated Cysteine Arylation. Chem.
Sci. 2017, 8, 4257−4263. (c) Messina, M. S.; Stauber, J. M.;
Waddington, M. A.; Rheingold, A. L.; Maynard, H. D.; Spokoyny, A.
M. Organometallic Gold (III) Reagents for Cysteine Arylation. J. Am.
Chem. Soc. 2018, 140, 7065−7069.
(12) Lee, H. G.; Lautrette, G.; Pentelute, B. L.; Buchwald, S. L.
Palladium-Mediated Arylation of Lysine in Unprotected Peptides.
Angew. Chem., Int. Ed. 2017, 56, 3177−3181.
(13) Tilley, S. D.; Francis, M. B. Tyrosine-Selective Protein
Alkylation Using π-Allylpalladium Complexes. J. Am. Chem. Soc.
2006, 128, 1080−1081.
(14) Cohen, D. T.; Zhang, C.; Pentelute, B. L.; Buchwald, S. L. An
Umpolung Approach for the Chemoselective Arylation of Selenocys-
teine in Unprotected Peptides. J. Am. Chem. Soc. 2015, 137, 9784−
9787.
(15) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic
Acids as A Traceless Activation Group for Conjugate Additions: A
Three-Step Synthesis of ( )-Pregabalin. J. Am. Chem. Soc. 2014, 136,
10886−10889.
ACKNOWLEDGMENTS
■
Research reported in this publication was supported by the
NIHGMS under Award No. RO1GM120162 and R35
GM132092. We thank Dr. Fabian Menges (Yale University)
for help with mass spectrometry and Brian Koronkiewicz (Yale
University) for valuable discussions. C.R.S. thanks the NSF
GRFP for funding (DGE1122492).
REFERENCES
■
(1) (a) Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current
Status and Future Directions. Drug Discovery Today 2015, 20, 122−
128. (b) Henninot, A.; Collins, J. C.; Nuss, J. M. The Current State of
Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61,
1382−1414.
(2) (a) Willemse, T.; Schepens, W.; van Vlijmen, H. W. T.; Maes, B.
U. W.; Ballet, S. The Suzuki-Miyaura Cross-Coupling as a Versatile
Tool for Peptide Diversification and Cyclization. Catalysts 2017, 7,
74. (b) Isidro-Llobet, A.; Kenworthy, M. N.; Mukherjee, S.; Kopach,
M. E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F.
Sustainability Challenges in Peptide Synthesis and Purification:
From R&D to Production. J. Org. Chem. 2019, 84, 4615−4628.
(3) Di, L. Strategic Approaches to Optimizing Peptide ADME
Properties. AAPS J. 2015, 17, 134−143.
(4) Sletten, E. M.; Bertozzi, C. R. Bioorthogonal Chemistry: Fishing
for Selectivity in a Sea of Functionality. Angew. Chem., Int. Ed. 2009,
48, 6974−6998.
(5) Doan, N.-D.; Molliens, M. P. d.; Letourneau, M.; Fournier, A.;
Chatenet, D. Optimization of On-Resin Palladium-Catalyzed
Sonogashira Cross-Coupling Reaction for Peptides and its Use in a
Structure−Activity Relationship Study of a Class B GPCR Ligand.
Eur. J. Med. Chem. 2015, 104, 106−114.
(6) (a) Shieh, W.-C.; Carlson, J. A. A Simple Asymmetric Synthesis
of 4-arylphenylalanines via Palladium-Catalyzed Cross Coupling
Reaction of Arylboronic Acids with Tyrosine Triflate. J. Org. Chem.
1992, 57, 379−381. (b) Burk, M. J.; Lee, J. R.; Martinez, J. P. A
Versatile Tandem Catalysis Procedure for the Preparation of Novel
Amino Acids and Peptides. J. Am. Chem. Soc. 1994, 116, 10847−
10848.
(7) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.; Chen, L.;
Hou, Q.; Qiao, W.; Barman, K.; Edwards, M. A.; Garrido-Castro, A.
F.; deGruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.; Clay, K. J.;
Bao, D.; Li, C.; Starr, J. T.; Garcia-Irizarry, C.; Sach, N.; White, H. S.;
Neurock, M.; Minteer, S. D.; Baran, P. S. Electrochemically Driven,
Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. J.
Am. Chem. Soc. 2019, 141, 6392−6402.
(8) (a) Rilatt, I.; Caggiano, L.; Jackson, R. F. W. Development and
Applications of Amino Acid Derived Organometallics. Synlett 2005,
18, 2701−2719. (b) Oswald, C. L.; Carrillo-Marquez, T.; Caggiano,
L.; Jackson, R. F. W. Negishi Cross-Coupling Reactions of α-Amino
Acid-Derived Organozinc Reagents and Aromatic Bromides. Tetrahe-
dron 2008, 64, 681−687. (c) Ross, A. J.; Lang, H. L.; Jackson, R. F.
W. Much Improved Conditions for the Negishi Cross-Coupling of
Iodoalanine Derived Zinc Reagents with Aryl Halides. J. Org. Chem.
2010, 75, 245−248. (d) Usuki, T.; Yanuma, H.; Hayashi, T.; Yamada,
H.; Suzuki, N.; Masuyama, Y. Improved Negishi Cross-Coupling
Reactions of an Organozinc Reagent Derived from l-Aspartic Acid
with Monohalopyridines. J. Heterocyclic Chem. 2014, 51, 269−273.
(9) (a) Ball, Z. T. Designing Enzyme-like Catalysts: A Rhodium(II)
Metallopeptide Case Study. Acc. Chem. Res. 2013, 46, 560−570.
(b) Noisier, A. F. M.; Brimble, M. A. C−H Functionalization in the
Synthesis of Amino Acids and Peptides. Chem. Rev. 2014, 114, 8775−
8806. (c) Mondal, S.; Chowdhury, S. Recent Advances on Amino
Acid Modifications via C−H Functionalization and Decarboxylative
Functionalization Strategies. Adv. Synth. Catal. 2018, 360, 1884−
1912. (d) Brandhofer, T.; Mancheno, O. G. Site-Selective C−H Bond
Activation/Functionalization of Alpha-Amino Acids and Peptide-Like
Derivatives. Eur. J. Org. Chem. 2018, 2018, 6050−6067.
(16) (a) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxell, B. D.; Eastgate, M. D.; Baran, P. S. A General
Alkyl-Alkyl Cross-Coupling Enabled by Redox-Active Esters and
Alkylzinc Reagents. Science 2016, 352, 801−805. (b) deGruyter, J. N.;
Malins, L. R.; Baran, P. S. Resdue-Specific Peptide Modification: A
Chemist’s Guide. Biochemistry 2017, 56, 3863−3873. (c) deGruyter,
J. N.; Malins, L. R.; Wimmer, L.; Clay, K. J.; Lopez-Ogalla, J.; Qin, T.;
Cornella, J.; Liu, Z.; Che, G.; Bao, D.; Stevens, J. M.; Qiao, J. X.;
Allen, M. P.; Poss, M. A.; Baran, P. S. CITU A Peptide and
Decarboxylative Coupling Reagent. Org. Lett. 2017, 19, 6196−6199.
(d) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K.
W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative
Alkenylation. Nature 2017, 545, 213−218. (e) Malins, L. R. Peptide
Modification and Cyclization via Transition-Metal Catalysis. Curr.
Opin. Chem. Biol. 2018, 46, 25−32.
(17) Goodnick, P. J.; Dominguez, R. A.; Vane, C. L. D.; Bowden, C.
L. Bupropion Slow-Release Response in Depression: Diagnosis and
Biochemistry. Biol. Psychiatry 1998, 44, 629−632.
(18) (a) Jorenby, D. E.; Fiore, M. C.; Smith, S. S.; Baker, T. B.
Treating Cigarette Smoking with Smokeless Tobacco: A Flawed
Recommendation. Am. J. Med. 1998, 104, 499−500. (b) Rogers, D.
F.; Barnes, P. J. COPD: New Developments and Therapeutic
Opportunities. Trends Pharmacol. Sci. 1999, 20, 352−354.
(19) Stone, T. W.; Darlington, L. G. Endogenous Kynurenines as
Targets for Drug Discovery and Development. Nat. Rev. Drug
Discovery 2002, 1, 609−620.
(20) Fernandes, C. S. M.; Teixeira, G. D. G.; Iranzo, O.; Roque, A.
C. A. In Biomedical Applications of Functionalized Nanomaterials:
Concepts, Development and Clinical Translation, 1st ed.; Sarmento, B.,
das Neves, J., Eds.; Elsevier: 2018; pp 105−138.
(21) (a) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-
F.; Houk, K. N.; Newman, S. G. Palladium-Catalyzed Suzuki−
Miyaura Coupling of Aryl Esters. J. Am. Chem. Soc. 2017, 139, 1311−
1318. (b) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.;
Szostak, M. Suzuki−Miyaura Cross-Coupling of Amides and Esters at
Room Temperature: Correlation with Barriers to Rotation Around
C−N and C−O Bonds. Chem. Sci. 2017, 8, 6525−6530. (c) Dardir, A.
H.; Melvin, P. R.; Davis, R. M.; Hazari, N.; Mohadjer Beromi, M.
D
Org. Lett. XXXX, XXX, XXX−XXX