S. Khaksar et al. / Tetrahedron Letters 49 (2008) 3527–3529
3529
147.75 (C), 155.4 (C@O); compound: 3n 1H NMR
(500 MHz, CDCl3): d = 1.51 (s, 9H), 2.18 (br s, 1H, OH),
3.44 (m, 2H), 3.74 (m, 2H), 4.50 (s, 2H), 7.27–7.32 (m,
3H), 7.37 (m, 2H); 13C NMR (125 MHz, CDCl3):
d = 28.8 (CH3), 50.12 (CH2), 52.40 (CH2), 62.2 (CH2),
80.94 (C), 128.0 (CH), 128.9 (CH), 138.68 (CH), 147.19
(C) 157.64 (C@O); compound: 3q 1H NMR (500 MHz,
CDCl3): d = 1.37 (s, 9H), 3.24 (m, 2H), 3.47 (t,
J = 5.5 Hz, 2H), 3.49 (t, J = 4 Hz, 2H), 3.65 (t, J = 5 Hz,
2H), 5.25 (br s, 1H, OH), 5.44 (br s, 1H, NH); 13C NMR
(125 MHz, CDCl3): d = 28.73 (CH3), 40.70 (CH2), 61.71
(CH2), 70.58 (CH2), 72.67 (CH2), 79.56 (C), 156.64 (C@O).
S
H
H
O
N
H
N
H
S
H
H
N
H
N
H
O
O
O
O
O
O
O
O
O
H
N
R
R
S
CO2
H
H
N
H
N
O
H
+
O
R
H
H
O
O
N
R
O
N
O
+
R
O
S
R
References and notes
O
H
H
N
H
N
H
1. Peter, P. I. D.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726–
3748.
Scheme 1. Proposed mechanism of the hydrogen bond catalyzed chemo-
selective N-tert-butoxycarbonylation of amines.
2. (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000,
122, 2395–2396; (b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F.,
III. J. Am. Chem. Soc. 2001, 123, 5260–5261; (c) Cordova, A.; Notz,
W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem. Soc.
2002, 124, 1842–1843; (d) Cordova, A.; Watanabe, S.; Tanaka, F.;
Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866–1867;
(e) Ooi, T.; Kameda, M.; Tannai, H.; Maruoka, K. Tetrahedron Lett.
2000, 41, 8339–8342; (f) Ooi, T.; Takeuchi, M.; Kameda, M.;
Maruoka, K. J. Am.Chem. Soc. 2000, 122, 5228–5229; (g) Ooi, T.;
Doda, K.; Maruoka, K. Org. Lett. 2001, 3, 1273–1276; (h) Iwabuchi,
Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc.
1999, 121, 10219–10220; (i) Enders, D.; Kallfass, U. Angew. Chem.,
Int. Ed. 2002, 41, 1743–1745; (j) Kerr, M. S.; Read de Alaniz, J.;
Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298–10299.
The role of thiourea may be explained by Scheme 1.3
Hydrogen bond formation between thiourea and the
carbonyl oxygen atoms of (Boc)2O leads to ‘electrophilic
activation’ (TS1) making the carbonyl group more suscep-
tible to nucleophilic attack. The nitrogen atom of thiourea
in turn forms a hydrogen bond with the hydrogen atom of
the amine and increases the electron density at the nitrogen
atom (nucleophilic activation). Electrostatic attraction
between the carbonyl group and the nitrogen atom leads
to TS2. Intramolecular nucleophilic attack by the nitrogen
atom on the carbonyl carbon followed by the elimination
of CO2, t-BuOH and urea forms the carbamate.
¨
3. (a) Menche, D.; BOhm, S.; Li, J.; Zander, W.; Rudolph, S.
Tetrahedron Lett. 2007, 48, 365–369; (b) Menche, D.; Arikan, F.
Synlett 2006, 841; (c) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.;
Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741–744.
4. Snieckus, V. Chem. Rev. 1990, 90, 879–933.
5. Lamothe, M.; Perez, M.; Colovray-Gotteland, V.; Halazy, S. Synlett
1996, 507–508.
6. (a) Basel, Y.; Hashers, A. J. Org. Chem. 2000, 65, 6368–6380; (b)
Grehn, L.; Ragnarsson, U. Angew. Chem., Int. Ed. Engl. 1985, 510–
511; (c) Knolker, T.; Braxmeier, H.-J. Tetrahedron Lett. 1996, 37,
5861–5864.
7. For examples, see: (a) Lutz, C.; Lutz, V.; Knochel, P. Tetrahedron
1998, 54, 6385–6402; (b) Bailey, S. W.; Chandrasekaran, R. Y.;
Ayling, J. E. J. Org. Chem. 1992, 57, 4470–4477.
8. Kelly, T. A.; McNeil, D. W. Tetrahedron Lett. 1994, 35, 9003–9006.
9. Boger, D. L.; McKie, J. A. J. Org. Chem. 1995, 60, 1271–1275.
10. Muchowski, J. M.; Venuti, M. C. J. Org. Chem. 1980, 45, 4798–4801.
11. Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283–
8286.
12. Heydari, A.; Kazem Shiroodi, R.; Hamadi, H.; Esfandyari, M.;
Pourayoubi, M. Tetrahedron Lett. 2007, 48, 5865–5867.
13. Upadhyaya, D. J.; Barge, A.; Stefania, R.; Cravotto, G. Tetrahedron
Lett. 2007, 48, 8318–8322.
14. Heydari, A.; Hosseini, S. E. Adv. Synth. Catal. 2005, 347, 1929–1931.
15. Chankeshwara, S. V.; Chakraborti, A. K. Synthesis 2006, 16, 2784–
2788.
16. Bartoli, G.; Bosco, M.; Locatelli, M.; Marcantoni, E.; Massaccesi,
M.; Melchiorre, P.; Sambri, L. Synlett 2004, 1794–1798.
17. Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R.
Tetrahedron Lett. 2004, 45, 6963–6965.
In summary, we have developed the first hydrogen bond
catalyzed chemoselective N-tert-butoxycarbonylation of
amines, which allows the efficient synthesis of diverse N-
Boc amines. The mild and nonacidic conditions together
with the high chemoselectivity of this protocol should
enable applications to complex or acid-sensitive substrates.
General procedure: N-tert-butoxycarbonylation of
amines: A solution of the amine (1.00 mmol) and (Boc)2O
(1 mmol) in toluene (5 mL) was treated with thiourea
(0.100 mmol) and the mixture was stirred until complete
conversion (5–40 min). After filtration, the solvent was
evaporated and the residue purified by column chromato-
graphy (silica gel) eluting with hexane–EtOAc (1:1) followed
by evaporation of the solvent. The physical data (mp, IR,
NMR) of the known compounds were found to be identical
with those reported in the literature.16 Spectroscopic data
for selected examples follows: Compound 3j: 1H NMR
(500 MHz, CDCl3): d = 1.54 (s, 9H), 2.18 (quin,
J = 6.5 Hz, 2H), 3.94 (t, J = 5.0 Hz, 4H); 13C NMR
(125 MHz, CDCl3): d = 15.7 (CH2), 28.7 (CH3), 44.1
1
(CH2), 79.4 (C), 156.6 (C@O); compound: 3k H NMR
(500 MHz, CDCl3): d = 1.57 (s, 9H), 6.69 (br s, 1H, OH),
6.89 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 9.5 Hz, 1H), 7.06–
7.11 (m, 2H), 8.17 (br s, 1H, NH); 13C NMR (125 MHz,
CDCl3): d = 28.69 (CH3), 82.43 (C), 119.06 (CH),
121.176 (CH), 121.71 (C), 125.87 (CH), 126.1 (CH),
18. For a review on recent advances in solventless organic reactions, see:
Cave, G. W. V.; Raston, G. L.; Scott, J. L. Chem. Commun. 2001,
2159–2169; Rothenberg, G.; Downie, A. P. K.; Toda, F. Chem. Rev.
2000, 100, 1025–1074.