824 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 4
Abreo et al.
(11) McBride, P. E. The Health Consequences of Smoking. Med. Clin.
North Am. 1992, 76, 333-353.
(12) Stolerman, I. P.; Garcha, H. S.; Mirza, N. R. Dissociations
Between the Locomotor Stimulant and Depressant Effects of
Nicotinic Agonists in Rats. Psychopharmacology (Berlin) 1995,
117, 430-437.
(13) Garvey, D. S.; Wasicak, J . T.; Decker, M. W.; Brioni, J . D.;
Buckley, M. J .; Sullivan, J . P.; Carrera, G. M.; Holladay, M. W.;
Arneric, S. P.; Williams, M. Novel Isoxazoles Which Interact with
Brain Cholinergic Channel Receptors Have Intrinsic Cognitive
Enhancing and Anxiolytic Activities. J . Med. Chem. 1994, 37,
1055-1059.
(14) Gopalakrishnan, M.; Monteggia, L. M.; Anderson, D. J .; Molinari,
E. J .; Piattoni-Kaplan, M.; Donnelly-Roberts, D.; Arneric, S. P.;
Sullivan, J . P. Stable Expression, Pharmacologic Properties and
Regulation of the Human Neuronal Nicotinic R4â2 Receptor. J .
Pharmacol. Exp. Ther. 1996, 276, 289-297.
(15) Badio, B.; Daly, J . W. Epibatidine, a Potent Analgetic and
Nicotinic Agonist. Mol. Pharmacol. 1994, 45, 563-569.
(16) Evans, D. A.; Takacs, J . M.; Hurst, K. M. Phosphonamide
Stabilized Allylic Carbanions. New Homoenolate Anion Equiva-
lents. J . Am. Chem. Soc. 1979, 101, 371-378.
(17) Harris, B. D.; Bhat, K. L.; J oullie, M. M. Synthetic Studies of
Detoxin Complex II: Synthesis of Detoxin B1 and B3. Hetero-
cycles 1986, 24, 1045-1060.
(18) Miyoshi, M.; Sugano, H.; Fujii, T.; Ishihara, T.; Yoneda, N. A.
Novel Synthesis of Optically Active Azetidine-2-carboxylic Acid.
Chem. Lett. 1973, 5.
(19) Sugano, H.; Miyoshi, M. A Convenient Method of Synthesizing
Protected R-Amino-γ-butyrolactones. Bull. Chem. Soc. J pn. 1973,
46, 669-670.
(dd, J ) 1.5, 2.2 Hz, 1H), 8.22 (dd, J ) 2.9, 3.0 Hz, 1H), 7.21-
7.24 (m, 2H), 4.26-4.35 (m, 1H), 4.00-4.10 (m, 2H), 3.73 (dd,
J ) 7.7, 8.5 Hz, 1H), 3.45-3.51 (m, 1H), 2.22-2.46 (m, 2H).
(R)-3-(2-Azetidinylmethoxy)pyridine (450 mg, 2.74 mmol)
was slurried in Et2O (20 mL) and MeOH (∼2 mL), and then
Et2O saturated with HCl gas was added at ambient temper-
ature. The solvent was removed, and the remaining solid was
recrystallized from MeOH/Et2O to afford product as a deli-
quescent white solid (206 mg, 31%): mp 138-140 °C; [R]20
)
D
+9.8° (c 0.5, MeOH); MS (CI/NH3) m/ e 165 (M + H)+; 1H NMR
(D2O, 300 MHz) δ 8.59 (d, J ) 2.8 Hz, 1H), 8.46 (d, J ) 5.7
Hz, 1H), 8.21 (ddd, J ) 1.2, 2.8, 9.0 Hz, 1H), 7.99 (dd, J ) 5.7,
9.0 Hz, 1H), 4.96-5.03 (m, 1H), 4.57 (d, J ) 4.4 Hz, 2H), 4.05-
4.21 (m, 2H), 2.71 (dd, J ) 8.5, 17.3 Hz, 2H). Anal. (C9H11N2O‚
2HCl‚0.2H2O) C, H, N.
3-((1-Meth yl-2(R)-a zetid in yl)m eth oxy)p yr id in e Dih y-
d r och lor id e (5b). (R)-1-(benzyloxycarbonyl)-3-(2-azetidinyl-
methoxy)pyridine from above (1.2 g, contaminated with Ph3-
PO) and paraformaldehyde (375 mg, 12.5 mmol) in EtOH (8
mL) was stirred in the presence of 10% Pd/C (80 mg) under 1
atm of H2 for 6 h. The mixture was filtered and the filtrate
concentrated. The residue was purified on flash silica gel
column chromatography. Elution with CHCl3/MeOH (90:10)
afforded a colorless oil (250 mg, 50% yield from (R)-1-(benzyl-
oxycarbonyl)-2-azetidinemethanol): [R]20D +58° (c 1.5, CHCl3);
1
MS (CI/NH3) m/ e 179 (M + H)+; H NMR (CDCl3, 300 MHz)
δ 8.32 (dd, J ) 1.8, 1.8 Hz, 1H), 8.21 (dd, J ) 2.9, 3.3 Hz, 1H),
7.20-7.22 (m, 2H), 4.02 (d, J ) 5.5 Hz, 2H), 3.35-3.49 (m,
2H), 2.83-2.91 (m, 1H), 2.40 (s, 3H), 2.05-2.13 (m, 2H).
(20) Rodebaugh, R. M.; Cromwell, N. H. Resolution of DL-Azetidine-
2-Carboxylic Acid. J . Heterocycl. Chem. 1969, 6, 993-994.
(21) Assays for chiral purity were conducted using a Chiralcel-OD
column (Daicel Industries). The eluting solvent was i-PrOH/
hexane (5:95) at a flow rate of 1 mL/min, with detection at 254
nM.
(R)-3-((1-Methyl-2-azetidinyl)methoxy)pyridine (220 mg, 1.23
mmol) was slurried in Et2O (10 mL) and treated with Et2O
saturated with HCl gas. The solvent was removed and the
remaining solid triturated with EtOAc (4×) to afford a deli-
(22) Pabreza, L. A.; Dhawan, S.; Kellar, K. J . [3H] Cytisine Binding
to Nicotinic Cholinergic Receptors in Brain. Mol. Pharmacol.
1990, 39, 9-12.
(23) Sullivan, J . P.; Decker, M. W.; Brioni, J . D.; Donnelly-Roberts,
D.; Anderson, D. J .; Bannon, A. W.; Kang, C.-H.; Adams, P.;
Piattoni-Kaplan, M.; Buckley, M.; Gopalakrishnan, M.; Williams,
M.; Arneric, S. P. (()-Epibatidine Elicits a Diversity of In Vitro
and In Vivo Effects Mediated by Nicotinic Acetylcholine Recep-
tors. J . Pharmacol. Exp. Ther. 1994, 271, 624-631.
(24) SYBYL, vesion 6.2, Tripos Inc., 1699 S. Hanley Rd., suite 303,
St. Louis, MO, 1994.
(25) Sprague, J . T.; Tai, J . C.; Yuh, Y.; Allinger, N. L. The MMP2
Calculation Method. J . Comput. Chem. 1987, 8, 581-603.
(26) Martin, Y. C.; Bures, M. G.; Danaher, E. A.; DeLazzer, J .; Lico,
I.; Pavlik, P. A Fast New Approach to Pharmacophore Mapping
and Its Application to Dopaminergic and Benzodiazepine Ago-
nists. J . Comput.-Aided Mol. Design 1993, 7, 83-102.
(27) Badio, B.; Shi, D.; Garrafo, M.; Daly, J . W. Antinociceptive
Effects of the Alkaloid Epibatidine: Further Studies on Involve-
ment of Nicotinis Receptors. Drug Dev. Res. 1995, 36, 46-59.
(28) Macallan, D. R. E.; Lunt, G. G.; Wonnacott, S.; Swanson, K. L.;
Rapoport, H.; Albuquerque, E. X. Methyllycaconitine and (+)-
Anatoxin-a Differentiate Between Nicotinic Receptors in Ver-
tebrate and Invertebrate Nervous Systems. FEBS Lett. 1988,
226, 357-363.
(29) Reavill, C.; J enner, P.; Kumar, R.; Stolerman, I. P. High Affinity
Binding of [3H](-)-Nicotine to Rat Brain Membranes and Its
Inhibition by Analogues of Nicotine. Neuropharmacology 1988,
27, 235-241.
(30) Sullivan, J . P.; Donnelly-Roberts, D.; Briggs, C. A.; Anderson,
D. J .; Gopalakrishnan, M.; Kaplan, M. P.; Campell, J . E.;
Mckenna, D. G.; Molinari, E.; Hettinger, A.-M.; Garvey, D. S.;
Wasicak, J .; Holladay, M. W.; Arneric, S. P. A-85380 [3-2(S)-
Azetidinylmethoxy)pyridine]: in Vitro Pharmacological Proper-
ties of A Novel, 50 pM Affinity Cholinergic Channel Activator.
Neuropharmacology 1996, in press.
(31) Beers, W. H.; Reich, E. Structure and Activity of Acetylcholine.
Nature 1970, 228, 917-922.
(32) Sheridan, R. P.; Nilakantan, R.; Dixon, J . S.; Venkataraghavan,
R. The Ensemble Approach to Distance Geometry: Application
to the Nicotinic Pharmacophore. J . Med. Chem. 1986, 29, 899-
906.
quescent white solid (220 mg, 83%): mp 111-113 °C; [R]25
)
D
+25.1° (c 0.5, MeOH); MS (CI/NH3) m/ e 179 (M + H)+; 1H
NMR (D2O, 300 MHz) δ 8.43 (d, J ) 2.9 Hz, 1H), 8.32 (d, J )
5.0 Hz, 1H), 7.81 (ddd, J ) 1.1, 2.9, 8.6 Hz, 1H), 7.68 (dd, J )
5.0, 8.6 Hz, 1H), 4.79-4.88 (m, 1H), 4.45-4.59 (m, 2H), 4.25-
4.34 (m, 1H), 4.01 (dd, J ) 9.4, 19.7 Hz, 1H), 3.00 (s, 3H), 2.56-
2.77 (m, 2H). Anal. (C10H14N2O‚0.5HCl‚0.6H2O) C, H, N.
Ack n ow led gm en t. The contributions of Mr. Wil-
liam H. Arnold and Dr. Suzanne Lebold to the prepara-
tion of (R)- azetidine 2-carboxylic acid are gratefully
acknowledged.
Refer en ces
(1) Davis, K.; Yamamura, H. Cholinergic Underactivity in Human
Memory Disorders. Life Sci. 1978, 23, 1729-1734.
(2) Cacabelos, R.; Nordberg, A.; Caamano, J .; Franco-Maside, A.;
Fernandez-Novoa, L.; Gomez, M. J .; Alvarez, X. A.; Takeda, M.;
Prous, J ., J r.; Nishimura, T.; Winblad, B. Molecular Strategies
for the First Generations of Antidementia Drugs (I). Tacrine and
Related Compounds. Drugs Today 1994, 30, 295-337.
(3) Arneric, S. P.; Sullivan, J . P.; Williams, M. In Psychopharma-
cology: Fourth generation of progress; Bloom, E. F., Kupfer, D.
J ., Eds.; Raven: New York, 1995; pp 95-110.
(4) Luetje, C. W.; Patrick, J .; Seguela, P. Nicotine Receptors in the
Mammalian Brain. FASEB J . 1990, 4, 2753-2760.
(5) Sargent, P. B. The Diversity of Neuronal Nicotinic Acetylcholine
Receptors. Annu. Rev. Neurosci. 1993, 16, 403-43.
(6) McGehee, D. S.; Role, L. W. Physiological Diversity of Nicotinic
Acetylcholine Receptors Expressed By Vertebrate Neurons.
Annu. Rev. Physiol. 1995, 57, 521-546.
(7) Wonnacott, S.; Drasdo, A.; Sanderson, E.; Rowell, P. In The
biology of nicotine dependence; Block, G., Marsh, J ., Eds.;
Wiley: Chichester, 1990; pp 87-105.
(8) Linville, D. G.; Williams, S.; Raszkiewicz, J . R.; Arneric, S. P.
Nicotinic Agonists Modulate Basal Forebrain Control of Cortical
Cerebral Blood Flow. J . Pharmacol. Exp. Ther. 1993, 267, 440-
448.
(9) Flores, C. M.; Rogers, S. W.; Pabreza, L. A.; Wolfe, B. B.; Kellar,
K. J . A Subtype of Nicotinic Cholinergic Receptor in Rat Brain
is Composed of R4 and â2 Subunits and Is Up-regulated by
Chronic Nicotine Treatment. Mol. Pharmacol. 1991, 41, 31-37.
(10) Lukas, R. J . Expression of Ganglia-Type Nicotinic Acetylcholine
Receptors and Nicotinic Binding Sites by Cells of the IMR-32
Human Neuroblastoma Clonal Line. J . Pharmacol. Exp. Ther.
1993, 265, 294-302.
(33) Glennon, R. A.; Herndon, J . L.; Dukat, M. Epibatidine-aided
Studies Toward Definition of a Nicotine Receptor Pharmaco-
phore. Med. Chem. Res. 1994, 4, 461-473.
(34) Czajkowski, C.; Karlin, A. Structure of The Nicotinic Receptor
Acetylcholine-Binding Site. Identification of Acidic Residues In
the δ Subunit Within 0.9 nm of the R Subunit-Binding Site
Disulfide. J . Biol.Chem. 1995, 270, 3160-3164.