high stability and processability. However, the D-Π-A structure
presents some drawbacks. First, the transparency-efficiency
tradeoff is difficult to settle with conventional D-Π-A systems
because the desirable âHRS increase is associated with a
bathochromatic shift of the electronic transition.4 Moreover,
most one-dimensional (1D) NLO-phores favor the formation
of a centrosymmetric arrangement in the crystal because of
dipole-dipole intermolecular interactions and exhibit no SHG
response. Concerning phase matching conditions, the optimal
molecular orientation of the 1D NLO-phore in the crystal does
not allow one to recover more than 38% of the microscopic
nonlinear optical response at the macroscopic scale.5
Λ-Type Regioregular Oligothiophenes: Synthesis
and Second-Order NLO Properties
Samia Zrig,†,‡ Guy Koeckelberghs,‡ Thierry Verbiest,*,‡
Bruno Andrioletti,*,† Eric Rose,*,† Andre´ Persoons,‡
Inge Asselberghs,‡ and Koen Clays‡
Laboratoire de chimie organique (UMR CNRS 7611), Institut de
chimie mole´culaire (FR 2769), UniVersite´ Pierre et Marie
Curie-Paris 6, case 181, 4 place Jussieu, F-75252 Paris cedex
05, France, and Laboratory for Molecular Electronics and
Photonics, Department of Chemistry, Katholieke UniVersiteit
LeuVen, Celestijnenlaan 200 D, B-3001, Belgium
Different approaches such as the use of electric field poling
or the preparation of Langmuir-Blodgett (LB) thin films were
proposed to limit the natural antiparallel dipolar interaction.
However, those strategies suffer from inherent relaxation or
limitations due to the tedious preparation of multilayered LB
films. The preparation of chiral oligothiophenes was also
proposed.6
ReceiVed May 9, 2007
An alternative approach that can rule out the formation of
centrosymmetric supramolecular arrays involves the preparation
of Λ-type molecules that consists in the pre-organization of the
NLO-phore by pairing two chromophores in a predetermined
two-dimensional configuration (2D).7 Additionally, Λ-type
molecules exhibit large off-diagonal â-tensor components
beneficial for the observation of large phase matched second-
order NLO responses,5,8 and high thermal stability.9
Accordingly, following preliminary work that had been
carried out in our groups,10 we designed a new series of regio-
regular11 Λ-type oligothiophenes (bi-, quater-, and sexithiophene)
end-capped with a thermally stable diphenylamino-donating
group, and an imino group, respectively. Despite a modest
accepting character, we retained the versatile imine function
because it allows the easy preparation of a large variety of
The synthesis of a new series of Λ-type, D-Π-A regioregular
oligothiophenes is described. The simultaneous presence of
the chiral centers and the Λ-type structure disfavored the
formation of centro-symmetrical dimeric assemblies. Hence,
enhanced first hyperpolarizabilities âHRS were measured in
comparison with those of the corresponding monomers.
(4) (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. ReV. 1994, 94,
195-242. (b) Zyss, J.; Ledoux, I.; Bertault, K.; Toupet, E. Chem. Phys.
1991, 150, 125-135. (c) Marder, S. R.; Kippelen, B.; Jen, A. K.-Y.;
Peyghambarian, N. Nature 1997, 388, 845-851.
In 1964, Rentzepis et al. and Heilmeier et al. first described
the use of organic molecules for the generation of optical second
harmonics (SHG).1 These unprecedented results pioneered the
amazing development of organic nonlinear optic chromophores
(NLO-phores).2 Indeed, as compared to the inorganic analogues,
organic NLO-phores exhibit high versatilities and processabili-
ties together with a low refractive index.3 Considering the high
academic and industrial impact of the second-order NLO
phenomenon, a special emphasis was dedicated to the prepara-
tion of efficient second-order NLO-phores. Among the plethora
of organic NLO-phores, oligothiophenes end-capped with donor
(D) and acceptor (A) moieties, D-Π-A type molecules, are
particularly promising because of a low HOMO-LUMO gap
favoring a high electron mobility, a decent transparency, and a
(5) (a) Yamamato, H.; Katogi, S.; Watanabe, T.; Sato, H.; Miyata, S.;
Hosomi, T. Appl. Phys. Lett. 1992, 60, 935-937. (b) Kuo, W.-J.; Hsiue,
G.-H.; Jeng, R.-J. Macromolecules 2001, 34, 2373-2384.
(6) See, for instance: Kinbinger, A. F. M.; Shenning, A. P. H. J.; Goldoni,
F.; Feast, W. J.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 1820-1821.
Shenning, A. P. H. J.; Kinbinger, A. F. M.; Biscari, F.; Cavallini M.; Cooper,
H. J.; Derrick, P. J.; Feast, W. J.; Lazzaroni, R.; Lecle`re, P.; McDonnell,
L. A.; Meijer, E. W.; Meskers, S. C. J. J. Am. Chem. Soc. 2002, 124, 1269-
1275.
(7) Selected examples: (a) Ostroverkhov, V.; Petschek, R. G.; Singer,
K. D.; Twieg, R. J. Chem. Phys. Lett. 2001, 340, 109-115. (b) Coe, B. J.;
Harris, J. A.; Brunschwig, B. S.; Garin, J.; Orduna, J. J. Am. Chem. Soc.
2005, 127, 3284-3285. (c) Moylan, C. R.; Ermer, S.; Lovejoy, S. M.;
McComb, I.-H.; Leung, D. S.; Wortmann, R.; Krdmer, P.; Twieg, R. J. J.
Am. Chem. Soc. 1996, 118, 12950-12955. (d) Van Elshocht, S.; Verbiest,
T.; Kauranen, M.; Ma, L.; Cheng, H.; Musick, K. Y.; Pu, L.; Persoons, A.
Chem. Phys. Lett. 1999, 309, 315-320. (e) Langeveld-Voss, B. M. W.;
Beljonne, D.; Shuai, Z.; Janssen, R. A. J.; Meskers, S. C. J.; Meijer, E. W.;
Bre´das, J.-L. AdV. Mater. 1998, 10, 1343-1348.
† Universite´ Pierre et Marie Curie-Paris 6.
‡ Katholieke Universiteit Leuven.
(1) (a) Rentzepis, P. M.; Pao, Y.-H. Appl. Phys. Lett. 1964, 5, 156-
158. (b) Heilmeier, G. H.; Ockman, N.; Braunstein, R. J.; Kramer, D. A.
Appl. Phys. Lett. 1964, 5, 229-230.
(8) Yang, M. L.; Champagne, B. J. Phys. Chem. A 2003, 107, 3942-
3951.
(2) (a) Prasard, P. N.; Williams, D. J. Introduction to Nonlinear Optical
Effects in Molecules and Polymers; Wiley: New York, 1991. (b) Nonlinear
Optics of Organic and Molecules and Polymers; Nalwa, H. S., Miyata, S.,
Eds.; CRC Press: Boca Raton, FL, 1997.
(3) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H.
J. Chem. ReV. 2005, 105, 1491-1546.
(9) Moylan, C. R.; Twieg, R. J.; Lee, V. Y.; Swanson, S. A.; Betterton,
K. M.; Miller, R. D. J. Am. Chem. Soc. 1993, 115, 12599-12600.
(10) Loire, G.; Prim, D.; Andrioletti, B.; Rose, E.; Persoons, A.; Sioncke,
S.; Vaissermann, J. Tetrahedron Lett. 2002, 43, 6541-6544.
(11) For other regioregular oligothiophenes, see, for instance: Sakurai,
S.; Goto, H.; Yashima, E. Org. Lett. 2001, 3, 2379-2382.
10.1021/jo070888a CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/27/2007
J. Org. Chem. 2007, 72, 5855-5858
5855