1072
C. Cadena-Amaro et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1069–1073
indicating co-operativity and reversibility of the dena-
turation/association process (data not shown).
to syn. Insertion of J results in a decreased thermal sta-
bility of all the duplexes compared to A:T and C:G base
pairs (from 5 to 10 ꢁC). However the best Tm terms are
found when J is placed opposite T or itself, as compared
to the other combinations. Our data are in agreement
with the destabilization observed for oxoG(anti):C base
pairs compared to C:G base pairs due to the C8-oxygen.
The results presented here can be interpreted by the base
pairing schemes postulated initially involving the two
edges of J depending on the anti and syn orientations.
Results from the melting temperatures data (Tm) (Table
1) indicate that the central replacement of a canonical
base by J decreased the duplex thermal stability as com-
pared to natural C:G (entry 1) and A:T (entry 2) base
pairs. For example, C:J (entry 3) and G:J (entry 7) pairs
lowered the Tm by 10–11 ꢁC as compared to C:G. A sim-
ilar destabilization is observed when J is placed opposite
A (A:J and J:A pairs, entries 4and 6). No significant
context effect is observed. The most favorable Tm terms
are found when J is placed opposite T (entries 8 and 10)
and opposite itself (entry 11), however the correspond-
ing duplexes are less stable than A:T duplex by 5 ꢁC.
Previous works on oxoG illustrate the difficulty to ex-
pect correlations between the thermodynamics of dis-
ruptions of DNA duplexes with interior lesions and
the biological consequences (preferentially insertion of
nucleotides opposite the lesions). Recognition of the
new base J by DNA polymerases is under investigation
and will be the subject of a separate paper.
We presumed that J(anti) pair with T according to a
Watson–Crick mode similar to 2AP:T base pair. As it
was reported that the thermodynamic stability of
2AP:T in short heteroduplex is only slightly changed
compared to A:T,30 the lowered thermal stability of
J:T and T:J base pairs compared to A:T base pair can
be interpreted by the impact of the 8-oxo function.
These results are consistent with the finding of several
groups studying the influence of oxidative lesion on du-
plex stability. It is known that 8-oxoG in DNA duplex
adopts both anti and syn conformations depending on
the pairing partner (C or A).31–33 Melting studies have
shown that the central 8-oxoG residue reduces duplex
thermal stabilities relative to G duplex when C is the
cross-strand partner. When A is placed opposite 8-oxoG
rather than G, an increase in stability is observed. Thus,
despite having one less hydrogen bond, 8-oxoG(syn):A
base pair is only slightly less stable than 8-oxoG(anti):C
pair.34
Acknowledgments
CONACYT (Mexico) is gratefully acknowledged for a
doctoral scholarship to C.R.C-A. We would like to
thank Professor J. S. Sun (M.N.H.N., Paris) for provid-
ing facility for denaturation experiments.
References and notes
1. Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.
2. Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A.
Nature 1990, 343, 33.
3. Lutz, M. J.; Held, H. A.; Hottiger, M.; Hubscher, U.;
Benner, S. A. Nucleic Acids Res. 1996, 24, 1308.
4. Ohtsuki, T.; Kimoto, M.; Ishikawa, M.; Mitsui, T.; Hirao,
I.; Yokoyama, S. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
4922.
5. Loakes, D. Nucleic Acids Res. 2001, 29, 2437.
6. Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P.
G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 3274.
7. Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew.
Chem., Int. Ed. 2000, 39, 991.
Similarly, the relative stability of J:T and J:J duplexes
can be explained by the formation of two hydrogen
bonds base pairs, J(anti):T base pair (according to Wat-
son–Crick mode as 2-AP:T) and J(syn):J(anti) base pair
as illustrated on Figure 1b.
8. Wagenknecht, H. A. Angew. Chem., Int. Ed. 2003, 42,
3204.
9. Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol.
2003, 7, 727.
10. Henry, A. A.; Olsen, A. G.; Matsuda, S.; Yu, C.;
Geierstanger, B. H.; Romesberg, F. E. J. Am. Chem.
Soc. 2004, 126, 6923.
11. Minakawa, N.; Kojima, N.; Hikishima, S.; Ssaki, T.;
Kiyosue, A.; Atsumi, N.; Ueno, Y.; Matsuda, A. J. Am.
Chem. Soc. 2003, 125, 9970.
12. Liu, H. B.; Gao, J. M.; Maynard, L.; Saito, Y. D.; Kool,
E. T. J. Am. Chem. Soc. 2004, 126, 1102.
13. Donohue, J.; Trueblood, K. N. J. Mol. Biol. 1960, 2, 363.
14. Traub, W.; Sussman, J. L. Nucleic Acids Res. 1982, 19,
2701.
In summary, we described a synthetic scheme for the
preparation of nucleoside dJ and its incorporation into
oligonucleotides using the appropriate phosphoramidite
derivative. Conformational analysis of the free nucleo-
side concludes that the presence of the 8-oxygen
switches the glycosidic orientation preference from anti
Table 1. Melting temperatures (Tm)a of heteroduplexes containing
canonical bases and 2-amino-8-oxopurine (noted J)
5’-ACTTGGCCXCCATTTTG-3’
3’-TGAACCGGYGGTAAAAC-5’
Entry
X:Y
Tm (ꢁC)
Entry
X:Y
Tm (ꢁC)
15. Shibutani, S.; Takeshita, M.; Grollman, A. P. Nature
1991, 349.
1
C:G
C:J
J:C
G:J
J:G
J:J
56
45
46
48
46
50
2
A:T
A:J
J:A
T:J
J:T
55
47
46
50
50
3
4
16. Kamiya, H. Nucleic Acids Res. 2003, 31, 517.
17. Fagan, P. A.; Fabrega, C.; Eritja, R.; Goodman, M. F.;
Wemmer, D. E. Biochemistry 1996, 35, 4026.
18. Sowers, L. C.; Boulard, Y.; Fazakerley, G. V. Biochem-
istry 2000, 39, 7613.
5
6
7
8
10
9
11
a Conditions: 10 lM sodium cacodylate, 0.1 M NaCl at pH 7.2, 1 lM
of each strand.
19. Pochet, S.; Marliere, P. C. R. Acad. Sci. Life Sci. 1996,
319, 1.
`