Versatile catalysts for Ti-salan-catalyzed asymmetric sulfoxidations
Conclusions
Titanium–salan complexes bearing bulky phenyl substituents at
the 3,30-positions of aromatic rings are the most stereoselective
catalysts for the oxidation of sterically demanding aryl benzyl
sulfides with H2O2. At the same time, catalysts with smaller substi-
tuents at the 3,30-positions (CH3, OCH3, and particularly H) demon-
strate higher enantioselectivities in the oxidations of less bulky
substrates, such as aryl methyl sulfides. The introduction of mild
electron acceptors (particularly, 5,50-I2 and 5,50-Br2) yields catalysts
7–9 that demonstrate good to high enantioselectivities with both
bulky and less bulky sulfides, along with the highest sulfoxide
selectivities (up to 92%). Kinetics suggests that the rate-limiting step
of the catalytic reaction is the interaction between the titanium–
salan catalyst and H2O2 to form the active species, presumably
titanium(IV) peroxo complex, which further rapidly reacts with the
sulfide. Hammett analysis indicates a moderately electrophilic
nature of the active oxygenating species (r-values of ꢀ1.35 to
ꢀ1.40), which is directly attacked by a nucleophilic sulfide, ruling
out an alternative electron transfer mechanism. A consistent
reaction mechanism is proposed.
Figure 1. Hammett plot (log(kX/kH) vs. s) for the competitive oxidation
of substituted p-XPhSCH3 by the system 5/H2O2. For details see
Experimental.
Table 3. Hammett r parameters for catalysts 5 and 7–9
Catalyst
5
7
8
9
r
ꢀ1.36
ꢀ1.39
ꢀ1.35
ꢀ1.40
Acknowledgements
This work was supported by the Russian Foundation for Basic
Research, grant 12-03-33180.
Altogether, these data can be explained as follows. At the first
(rate-determining) step, an adduct is formed between the titanium
complex and hydrogen peroxide (cf. other studies[22,26,27,29,30]).
Coordination of H2O2 to the titanium center in the chiral ligand
framework is (1) a precondition to accomplish the oxygen transfer
in a stereoselective fashion and (2) believed to increase the peroxide
electrophilicity and activate it for the sulfide oxidation: in the
absence of Ti-salan catalysts, no oxidation takes place. A plausible
reaction mechanism is presented in Scheme 2. The mode of H2O2
coordination to titanium (Z1 or Z2) is not reliably established as
yet. However, we favor the hypothesis of Z2 coordination since a
test reaction with tBuOOH (for which case a Z2 coordination is less
likely, especially with most sterically demanding titanium–salan
catalysts, where X ¼ H) as the terminal oxidant demonstrated
only a 3% sulfide conversion (see Experimental). Recently, a
similar Z2-peroxotitanium-reactive intermediate was predicted
by density functional theory calculations in non-stereoselective
titanium–salan-catalyzed sulfoxidation, and its formation was
experimentally corroborated by atmospheric pressure chemical
ionization (APCI) mass spectrometric studies.[43]
References
[1] P. Pitchen, M. Desmukh, E. Dunach, H. B. Kagan, J. Am. Chem. Soc.
1984, 106, 8188.
[2] F. Di Furia, G. Modena, R. Seraglia, Synthesis 1984, 325.
[3] H. Cotton, T. Elebring, M. Larsson, L. Li, H. Sörensen, S. Von Unge,
Tetrahedron: Asymmetry 2000, 11, 3819.
[4] I. Fernandez, N. Khiar, Chem. Rev. 2003, 103, 3651.
[5] D. J. Ramón, M. Yus, Chem. Rev. 2006, 106, 2126.
[6] K. P. Bryliakov, E. P. Talsi, Curr. Org. Chem. 2008, 12, 386.
[7] E. Wojaczyńska, J. Wojaczyński, Chem. Rev. 2010, 110, 4303.
[8] G. E. O’Mahony, P. Kelly, S. E. Lawrence, A. R. Maguire, Arkivoc
2011, 1.
[9] K. P. Bryliakov, E. P. Talsi, Curr. Org. Chem. 2012, 16, 1215.
[10] A. Colombo, G. Marturano, A. Pasini, A. Gazz. Chim. Ital. 1986, 116, 35.
[11] B. Saito, T. Katsuki, Tetrahedron Lett. 2001, 42, 3873.
[12] B. Saito, T. Katsuki, Tetrahedron Lett. 2001, 42, 8333.
[13] T. Tanaka, B. Saito, T. Katsuki, Tetrahedron Lett. 2002, 43, 3259.
[14] K. P. Bryliakov, E. P. Talsi, J. Mol. Catal. A: Chem. 2007, 264, 280.
[15] Y. Wang, M. Wang, L. Wang, Y. Wang, X. Wang, L. Sun. Appl. Organomet.
Chem. 2011, 25, 325.
[16] K. P. Bryliakov, E. P. Talsi, Eur. J. Org. Chem. 2008, 3369.
[17] P. Adão, F. Avecilla, M. Bonchio, M. Carraro, J. C. Pessoa, I. Correia,
Eur J. Inorg. Chem. 2010, 5568.
[18] K. P. Bryliakov, E. P. Talsi, Eur. J. Org. Chem. 2011, 4693.
[19] K. P. Bryliakov, E. P. Talsi, Angew. Chem. Int. Ed. 2004, 43, 5228.
[20] K. P. Bryliakov, E. P. Talsi, Chem. Eur. J. 2007, 13, 8045.
[21] K. Matsumoto, Y. Sawada, B. Saito, K. Sakai, T. Katsuki, Angew. Chem.
Int. Ed. 2005, 44, 4935.
LTi(m-O)2TiL
H2O2
[22] Y. Sawada, K. Matsumoto, S. Kondo, H. Watanabe, T. Ozawa,
K. Suzuki, B. Saito, T. Katsuki, Angew. Chem. Int. Ed. 2006, 45, 3478.
[23] K. Matsumoto, Y. Sawada, T. Katsuki, Synlett 2006, 3545.
[24] Y. Sawada, K. Matsumoto, T. Katsuki, Angew. Chem. Int. Ed. 2007,
46, 4559.
[25] Y. Shimada, S. Kondo, Y. Ohara, K. Matsumoto, T. Katsuki, Synlett
2007, 2445.
[26] S. Kondo, K. Saruhashi, K. Seki, K. Matsubara, K. Miyaji, T. Kubo,
K. Matsumoto, T. Katsuki, Angew. Chem. Int. Ed. 2008, 47, 10195.
[27] K. Matsumoto, T. Oguma, T. Katsuki, Angew. Chem. Int. Ed.
2009, 48, 7432.
O
R1SR2
LTi
H2O
O
R1SOR2
H
LTi
O
O
H
LTi
O
O
H2O2
[28] K. Matsumoto, T. Kubo, T. Katsuki, Chem. Eur. J. 2009, 15, 6573.
[29] A. Berkessel, M. Brandenburg, E. Leitterstorf, J. Frey, J. Lex, M. Schäfer,
Adv. Synth. Catal. 2007, 349, 2385.
Scheme 2. Proposed reaction scheme for titanium(IV)–salan-catalyzed
sulfoxidations. L is the salan ligand.
Appl. Organometal. Chem. 2013, 27, 239–244
Copyright © 2013 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc