Please do not adjust margins
RSC Advances
Page 11 of 13
Journal Name
DOI: 10.1039/C5RA15817F
ARTICLE
8.
S. I. a. A. V. Avelino Corma, Chem.Rev., 2007, 107, 2411-
2502.
P. Gallezot, Chemical Society reviews, 2012, 41, 1538-
1558.
reaction mixture, as it relies on convection currents and the
thermal conductivity of the media (reaction vessel, reactants,
and solvent phase, etc.), therefore the results obtained by
conventional heating, owing to the longer reaction time, are
slightly inferior when compared to the ultrasonic and
microwave irradiation pathways (Table 6).
9.
10.
11.
M. J. Climent, A. Corma and S. Iborra, Green Chemistry
,
2014, 16, 516.
L. Moity, A. Benazzouz, V. Molinier, V. Nardello-Rataj, M.
K. Elmkaddem, P. de Caro, S. Thiébaud-Roux, V. Gerbaud,
P. Marion and J.-M. Aubry, Green Chem., 2015, 17, 1779-
1792.
Conclusion
12.
13.
14.
J. I. García, H. García-Marín and E. Pires, Green Chemistry
2014, 16, 1007.
,
In summary, we developed a green heterogeneous process to
synthesize industrially useful chemicals from the acetalization
of glycerol. A solid acid catalysts from naturally abundant
bentonite were prepared by simple acid activation under mild
synthetic conditions. During the acid treatment, the parent clay
composition was considerably changed. The specific surface area
and pore volume of 6 N H2SO4-treated clay was found to
increase by ~2.4 and ~2 times respectively. The synthesized
catalyst has been efficiently employed for the valorisation of
B. L. Wegenhart, S. Liu, M. Thom, D. Stanley and M. M.
Abu-Omar, ACS Catalysis, 2012, , 2524-2530.
2
M. B. Güemez, J. Requies, I. Agirre, P. L. Arias, V. L. Barrio
and J. F. Cambra, Chemical Engineering Journal, 2013,
228, 300-307.
X. Hong, O. McGiveron, A. K. Kolah, A. Orjuela, L.
Peereboom, C. T. Lira and D. J. Miller, Chemical
Engineering Journal, 2013, 222, 374-381.
15.
glycerol by means of an optimized mild and eco-friendly 16.
M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C. Della
Pina, Angewandte Chemie, 2007, 46, 4434-4440.
A. Patel and N. Narkhede, Energy & Fuels, 2012, 26, 6025-
6032.
D. Nandan, P. Sreenivasulu, L. N. Sivakumar Konathala, M.
Kumar and N. Viswanadham, Microporous and
Mesoporous Materials, 2013, 179, 182-190.
process. The catalytic chemical up gradation of glycerol was
further shown to be more efficient and cost effective by using
17.
the non-conventional energy sources such as microwave
irradiation and ultra-sonication. The development process
could be efficiently applied to the solvent-free acetalization of
18.
several aldehydes and ketones with glycerol to produce
19.
S. Zhang, Z. Zhao and Y. Ao, Applied Catalysis A: General
2015, 496, 32-39.
,
corresponding acetals or ketals in high yields. Moreover, we
successfully utilized this sustainable and green protocol to
20.
achieve commercially valuable hyacinth fragrance as well as
S. B. Umbarkar, T. V. Kotbagi, A. V. Biradar, R. Pasricha, J.
Chanale, M. K. Dongare, A.-S. Mamede, C. Lancelot and E.
Payen, Journal of Molecular Catalysis A: Chemical, 2009,
310, 150-158.
furan based fuel additive precursors in good conversion and
selectivity of the products.
21.
B. Wang, Y. Shen, J. Sun, F. Xu and R. Sun, RSC Advances
2014, , 18917.
H. R. Prakruthi, B. M. Chandrashekara, B. S. Jai Prakash
and Y. S. Bhat, Catal. Sci. Technol., 2015, , 3667-3674.
,
4
22.
Acknowledgements
5
The authors are grateful to the Council of Scientific and
23.
R. W. McCabe and J. M. Adams, in Developments in Clay
Science, eds. B. Faïza and L. Gerhard, Elsevier, 2013, vol.
Volume 5, pp. 491-538.
Industrial Research (CSIR) India for financial support under the
Network project. RRP acknowledges CSIR, New Delhi for the
fellowship. The authors also thank the Analytical Science
Discipline of the Institute for instrumentation facility.
24.
F. Bergaya and G. Lagaly, in Developments in Clay Science,
eds. B. Faïza and L. Gerhard, Elsevier, 2013, vol. Volume 5,
pp. 1-19.
25.
26.
27.
F. R. V. D. a. P. d. S. Santos, Quim. Nova, 2001, 24, 345-
353.
Notes and references
S. Korichi, A. Elias and A. Mefti, Applied Clay Science
2009, 42, 432-438.
,
1.
R. Luque, J. C. Lovett, B. Datta, J. Clancy, J. M. Campelo
P. Komadel and J. Madejová, in Developments in Clay
Science, eds. B. Faïza and L. Gerhard, Elsevier, 2013, vol.
Volume 5, pp. 385-409.
P. Anastas and N. Eghbali, Chemical Society reviews, 2010,
39, 301-312.
and A. A. Romero, Energy & Environmental Science, 2010,
3
, 1706.
B. Mallesham, P. Sudarsanam and B. M. Reddy, Catalysis
Science & Technology, 2014, , 803-813.
C. H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu,
Chemical Society reviews, 2008, 37, 527-549.
M. Koberg and A. Gedanken, Energy & Environmental
Science, 2012, 5, 7460.
S. Bagheri, N. M. Julkapli and W. A. Yehye, Renewable and
Sustainable Energy Reviews, 2015, 41, 113-127.
C. Crotti, E. Farnetti and N. Guidolin, Green Chemistry
2010, 12, 2225.
2.
3.
4.
5.
6.
7.
28.
29.
30.
31.
32.
4
G. C. Cravotto, P., Chemical Society reviews, 2006, 35
180-196.
,
C. O. Kappe, Angewandte Chemie International Edition
2004, 43, 6250-6284.
,
R. R. Pawar, S. V. Jadhav and H. C. Bajaj, Chemical
Engineering Journal, 2014, 235, 61-66.
J. P. Nguetnkam, R. Kamga, F. Villiéras, G. E. Ekodeck, A.
,
Razafitianamaharavo and J. Yvon, Applied Clay Science
2011, 52, 122-132.
,
A. Behr, J. Eilting, K. Irawadi, J. Leschinski and F. Lindner,
Green Chem., 2008, 10, 13-30.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 11
Please do not adjust margins