Organic Letters
Letter
of imatinib-resistant patients with chronic myeloid leukemia. Ther.
Adv. Hematol. 2013, 4, 103.
(8) Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. An expeditious
synthesis of imatinib and analogues utilising flow chemistry methods.
Org. Biomol. Chem. 2013, 11, 1822.
(9) Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. A flow-based
synthesis of imatinib: the API of Gleevec. Chem. Commun. 2010, 46,
2450.
(10) Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen,
K. F.; Buchwald, S. L. Palladium-catalyzed amination reactions in
flow: overcoming the challenges of clogging via acoustic irradiation.
Chem. Sci. 2011, 2, 287.
(11) (a) Naber, J. R.; Buchwald, S. L. Packed-bed reactors for
continuous-flow C-N cross-coupling. Angew. Chem., Int. Ed. 2010, 49,
9469. (b) Yang, J. C.; Niu, D.; Karsten, B. P.; Lima, F.; Buchwald, S.
L. Use of a ″catalytic″ cosolvent, N,N-dimethyl octanamide, allows the
flow synthesis of imatinib with no solvent switch. Angew. Chem., Int.
Ed. 2016, 55, 2531.
(12) (a) Yan, G.; Zhang, Y.; Wang, J. Recent advances in the
synthesis of aryl nitrile compounds. Adv. Synth. Catal. 2017, 359,
4068. (b) Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-
metal-catalyzed carbon−halogen bond formation. Chem. Rev. 2016,
116, 8003. (c) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.;
Shook, B. C. Nitrile-containing pharmaceuticals: efficacious roles of
the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902.
(13) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M.
Practical aspects of carbon−carbon cross-coupling reactions using
heteroarenes. Org. Process Res. Dev. 2010, 14, 30.
(14) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. N-Substituted 2-
aminobiphenylpalladium methanesulfonate precatalysts and their use
in C−C and C−N cross-couplings. J. Org. Chem. 2014, 79, 4161.
(15) Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Mild and selective
heterogeneous catalytic hydration of nitriles to amides by flowing
through manganese dioxide. Org. Lett. 2014, 16, 1060.
(16) Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. Efficient and
practical transition metal-free catalytic hydration of organonitriles to
amides. Green Chem. 2012, 14, 921.
REFERENCES
■
(1) (a) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A.
Glivec (STI571, imatinib), a rationally developed, targeted anticancer
drug. Nat. Rev. Drug Discovery 2002, 1, 493. (b) Buchdunger, E.;
Zimmermann, J.; Mett, H.; Meyer, T.; Muller, M.; Druker, B. J.;
Lydon, N. B. Inhibition of the Abl protein-tyrosine kinase in vitro and
in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996, 56,
100. (c) Deininger, M.; Buchdunger, E.; Druker, B. J. The
development of imatinib as a therapeutic agent for chronic myeloid
leukemia. Blood 2005, 105, 2640.
(2) WHO Model List of Essential Medicines 20th List; World Health
Organization, 2017.
(3) Review on synthetic routes toward imatinib: (a) Deadman, B. J.;
Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. The synthesis of Bcr-Abl
inhibiting anticancer pharmaceutical agents imatinib, nilotinib and
dasatinib. Org. Biomol. Chem. 2013, 11, 1766. Recent examples on
imatinib synthesis in batch: (b) Nicolaou, K. C.; Vourloumis, D.;
Totokotsopoulos, S.; Papakyriakou, A.; Karsunky, H.; Fernando, H.;
Gavrilyuk, J.; Webb, D.; Stepan, A. F. Synthesis and biopharmaceut-
ical evaluation of imatinib analogues featuring unusual structural
motifs. ChemMedChem 2016, 11, 31. (c) Kankan, R. N.; Rao, D. R.
WO Patent 2004074502 A2, 2014. (d) Maiti, D.; Fors, B. P.;
Henderson, J. L.; Nakamura, Y.; Buchwald, S. L. Palladium-catalyzed
coupling of functionalized primary and secondary amines with aryl
and heteroaryl halides: two ligands suffice in most cases. Chem. Sci.
2011, 2, 57.
(4) For reviews on manufacturing of APIs using flow technologies:
(a) Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-flow
technologya tool for the safe manufacturing of active pharmaceut-
ical ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688. (b) Porta, R.;
Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the
synthesis of pharmaceutical products. Org. Process Res. Dev. 2016, 20,
2. (c) Baumann, M.; Baxendale, I. R. The synthesis of active
pharmaceutical ingredients (APIs) using continuous flow chemistry.
Beilstein J. Org. Chem. 2015, 11, 1194.
(5) (a) Yoshida, J.-i.; Kim, H.; Nagaki, A. Green and sustainable
chemical synthesis using flow microreactors. ChemSusChem 2011, 4,
331. (b) Glasnov, T. N.; Kappe, C. O. The Microwave-to-flow
paradigm: Translating high-temperature batch microwave chemistry
to scalable continuous-flow processes. Chem. - Eur. J. 2011, 17, 11956.
(c) Damm, M.; Glasnov, T. N.; Kappe, C. O. Translating high-
temperature microwave chemistry to scalable continuous flow
processes. Org. Process Res. Dev. 2010, 14, 215. (d) Plutschack, M.
B.; Pieber, B.; Gilmore, K.; Seeberger, P. The hitchhiker’s guide to
flow chemistry. Chem. Rev. 2017, 117, 11796.
(6) (a) Snead, D. R.; Jamison, T. F. A three-minute synthesis and
purification of ibuprofen: pushing the limits of continuous-flow
processing. Angew. Chem., Int. Ed. 2015, 54, 983. (b) Britton, J.;
Jamison, T. F. A unified continuous flow assembly-line synthesis of
highly substituted pyrazoles and pyrazolines. Angew. Chem., Int. Ed.
2017, 56, 8823. (c) Lin, H.; Dai, C.; Jamison, T. F.; Jensen, K. F. A
rapid total synthesis of ciprofloxacin hydrochloride in continuous
́
flow. Angew. Chem., Int. Ed. 2017, 56, 8870. (d) Bedard, A.-C;
Longstreet, A. R.; Britton, J.; Wang, Y.; Moriguchi, H.; Hicklin, R. W.;
Green, W. H.; Jamison, T. F. Minimizing E-factor in the continuous-
flow synthesis of diazepam and atropine. Bioorg. Med. Chem. 2017, 25,
6233. (e) Zhang, P.; Russell, M. G.; Jamison, T. F. Continuous flow
total synthesis of rufinamide. Org. Process Res. Dev. 2014, 18, 1567.
(f) Dai, C.; Snead, D. R.; Zhang, P.; Jamison, T. F. Continuous-flow
synthesis and purification of atropine with sequential in-line
separations of structurally similar impurities. J. Flow Chem. 2015, 5,
133.
(7) (a) Bixby, D.; Talpaz, M. Seeking the causes and solutions to
imatinib-resistance in chronic myeloid leukemia. Leukemia 2011, 25,
7. (b) Milojkovic, D.; Apperley, J. Mechanisms of eesistance to
imatinib and aecond-generation tyrosine inhibitors in chronic myeloid
leukemia. Clin. Cancer Res. 2009, 15, 7519. (c) Bhamidipati, P. K.;
Kantarjian, H.; Cortes, J.; Cornelison, A. M.; Jabbour, E. Management
E
Org. Lett. XXXX, XXX, XXX−XXX