10.1002/chem.201805082
Chemistry - A European Journal
COMMUNICATION
showed the generation of high levels of singlet oxygen (ΦΔ ≈
100%), comparing the reported zinc complex.[4d] The high singlet
oxygen generation abilities also supported that such Pcs did not
aggregate, since the aggregation reduced the singlet oxygen
quantum yield due to enhanced radiationless excited-state
dissipation.[19] Especially, palladium complex 6 is extremely
photostable, supporting the hypothesis that low-lying HOMOs
prevent the reaction with singlet oxygen, which is generated by 6
itself. The high production of singlet oxygen of 6 by irradiation
with red light was also demonstrated in a photooxygenation
reaction. For that purpose, a mixture of 9,10-diphenylanthracene
and 6 was exposed to red light under an atmosphere of O2,
which afforded the corresponding endoperoxide in high yield (cf.
Supporting Information), indicating that 6 can serve as a red-
light-responsive photooxidizing sensitizer.
This work was partly supported by JSPS KAKENHI grant
(15K05409 and 18K19071), the Sumitomo Foundation, the
TOBE MAKI Scholarship Foundation, the Japan Prize
Foundation, and Kanazawa University SAKIGAKE Project 2018.
The authors thank Prof. Soji Shimizu (Kyushu Univ.) for carrying
out fluorescence quantum yield measurements, Prof. Shigehisa
Akine and Dr. Yoko Sakata (Kanazawa Univ.) for single-crystal
X-ray diffraction measurements, and the Nanotechnology
Platform Program (Molecule and Material Synthesis) of the
MEXT for conducting mass spectrometry measurements (Dr.
Akio Miyazato at JAIST).
Keywords: phthalocyanine • electron-withdrawing group • lead •
singlet oxygen • photostability
[1]
[2]
A. Braun, J. Tcherniac, Ber. Dtsch. Chem. Ges. 1907, 40, 2709-2714.
a) Eds.: K. M. Kadish, K. M. Smith, R. Guilard, Handbook of Porphyrin
Science, World Scientific Publishing: Singapore, 2010. b) Eds.: K. M.
Kadish, K. M. Smith, R. Guilard, The Porphyrin Handbook, Academic
Press: San Diego, CA, 2003. c) Y. Rio, M. S. Rodríguez-Morgade, T.
Torres, Org. Biomol. Chem. 2008, 6, 1877-1894.
[3]
[4]
T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M.
Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889-905.
a) M. Mitsunaga, M. Ogawa, N, Kosaka, L. T. Rosenblum, P. L. Choyke,
H. Kobayashi, Nat. Med. (N. Y., NY, U. S.), 2011, 17, 1685-1691. b) K.
Kawauchi, W. Sugimoto, T. Yasui, K. Murata, K. Itoh, K. Takagi, T.
Tsuruoka, K. Akamatsu, H. Tateishi-Karimata, N. Sugimoto, D. Miyoshi,
Nat. Commun. 2018, 9, 2271. c) R. Bonnett, Chem. Soc. Rev. 1995, 24,
19-33. d) S. E. Maree, T. Nyokong, J. Porphyrins Phthalocyanines 2014,
136, 765-776.
[5]
[6]
G. Schnurpfeil, A. K. Sobbi, W. Spiller, H. Kuesch, D. Wöhrle, J.
Porphyrins Phthalocyanines 1997, 1, 159-167.
a) T. Furuyama, N. Kobayashi, Phys. Chem. Chem. Phys. 2017, 19,
15596-15612. b) T. Furuyama, T. Sato, N. Kobayashi, J. Am. Chem.
Soc. 2015, 137, 13788-13791.
Figure 4. Comparison of the rate of decay of 1,3-diphenylisobenzofuran
(DPBF) sensitized by Pcs in CHCl3 (ca. 5.0 x 10–6 M) as shown by the
decrease in the absorbance at 415 nm. The absorption coefficient was
normalized by the rates of the light absorption at 680 nm. Std–ZnPc is a ββ-
octa-(p-tert-butylphenoxy) phthalocyanine zinc complex[4d] (for details, see the
Supporting Information).
[7]
[8]
[9]
A. de la Escosura, M. V. Martínez-Díaz, D. M. Guldi, T. Torres, J. Am.
Chem. Soc. 2006, 128, 4112-4118.
E. M. Maya, J. S. Shirk, A. W. Snow, G. L. Roberts, Chem. Commun.
2001, 615-616.
a) K. Ukei, Acta Cryst. 1973, B29, 2290-2292. b) P. M. Burnham, M. J.
Cook, L. A. Gerrard, M. J. Heeney, D. L. Hughes, Chem. Commun.
2003, 2064-2065.
In summary, we have developed a reliable and robust
synthesis of EWG-substituted Pcs using lead ions. Free-base
Pcs were obtained with high chemoselectivity, and various metal
complexes were prepared subsequently. All Pcs absorb red to
near-IR light, i.e., these EWG-substituted Pc macrocycles may
serve as a platform for red-to-near-IR materials. These Pcs
show various unique physical properties such as intense near-IR
fluorescence, high reduction potentials, and the generation of
high levels of singlet oxygen upon irradiation with red light. The
low-lying MOs prevent the decomposition of these Pcs upon
exposure to the singlet oxygen that they generate. Especially
palladium complex 6 combines an attractive ability to generate
high levels of singlet oxygen with high photostability. The Pcs
obtained in this work demonstrate that the designed synthetic
method and structure overcome the critical limitation of
applications to red-to-near-IR materials.
[10] Y. Matano, T. Shibano, H. Nakano, Y. Kimura, H. Imahori, Inorg. Chem.
2012, 51, 12879-12890.
[11] a) E. M. Maya, C. García, E. M. García-Frutos, P. Vázquez, T. Torres, J.
Org. Chem. 2000, 65, 2733-2739. b) Ü. İşci, A. S. Faponle, P.
Afanasiev, F. Albrieux, V. Briois, V. Ahsen, F. Dumoulin, A. B. Sorokin,
S. P. de Visser, Chem. Sci. 2015, 6, 5063-5075.
[12] B. Tylleman, G. Gbabode, C. Amato, C. Buess-Herman, V. Lemaur, J.
Cornil, R. G. Aspe, Y. H. Geerts, S. Sergeyev, Chem. Mater. 2009, 21,
2789-2797.
[13] X. Deng, W. W. Porter III, T. P. Vaid, Polyhedron 2005, 24, 3004-3011.
[14] C. C. Leznoff, L. S. Black, A. Hiebert, P. W. Causey, D. Christendat, A.
B. P. Lever, Inorg. Chim. Acta 2006, 359, 2690-2699.
[15] T. Furuyama, K. Satoh, T. Kushiya, N. Kobayashi, J. Am. Chem. Soc.
2014, 136, 765-776.
[16] A. Ogunsipe, D. Maree, T. Nyokong, J. Mol. Struct. 2003, 650, 131-140.
[17] P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R. Z. U. Kobak, E.
Svandrlikova, L. Váchová, K. Lang, Inorg. Chem. 2012, 51, 4215-4223.
[18] J. J. Benson-Smith, H. Ohkita, S. Cook, J. R. Durrant, D. D. C. Bradley,
J. Nelson, Dalton Trans. 2009, 10000-10005.
[19] J. R. Darwent, P. Douglas, A. Harriman, G. Porter, M. C. Richoux,
Coord. Chem. Rev. 1982, 44, 83-126.
Acknowledgements
This article is protected by copyright. All rights reserved.