Edge Article
Chemical Science
References
1 (a) M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and
A. T. McPhail, J. Am. Chem. Soc., 1971, 93, 2325; (b)
G. M. Cragg, Med. Res. Rev., 1998, 18, 315; (c)
D. G. I. Kingston, Chem. Commun., 2001, 867.
2 (a) R. A. Holton, C. Somoza, H. B. Kim, F. Liang,
R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith and
S. Kim, J. Am. Chem. Soc., 1994, 116, 1597; (b) R. A. Holton,
H. B. Kim, C. Somoza, F. Liang, R. J. Biediger,
P. D. Boatman, M. Shindo, C. C. Smith and S. Kim, J. Am.
Chem. Soc., 1994, 116, 1599; (c) K. C. Nicolaou, Z. Yang,
J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy,
C. F. Claiborne, J. Renaud, E. A. Couladouros,
K. Paulvannan and E. J. Sorensen, Nature, 1994, 367, 630;
(d) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link,
L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs,
W. G. Bornmann, C. A. Alaimo, C. A. Coburn and M. J. Di
Grandi, J. Am. Chem. Soc., 1996, 118, 2843; (e)
P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig,
T. E. Glass, J. B. Houze, N. E. Krauss, D. Lee,
D. G. Marquess, P. L. McGrane, W. Meng, M. G. Natchus,
A. J. Shuker, J. C. Sutton and R. E. Taylor, J. Am. Chem.
Soc., 1997, 119, 2757; (f) K. Morihira, R. Hara, S. Kawahara,
T. Nishimori, N. Nakamura, H. Kusama and I. Kuwajima,
J. Am. Chem. Soc., 1998, 120, 12980; (g) T. Mukaiyama,
I. Shiina, H. Iwadare, M. Saitoh, T. Nishimura, N. Ohkawa,
H. Sakoh, K. Nishimura, Y. Tani, M. Hasegawa, K. Yamada
and K. Saitoh, Chem.–Eur. J., 1999, 5, 121; (h) T. Doi,
S. Fuse, S. Miyamoto, K. Nakai, D. Sasuga and
T. Takahashi, Chem.–Asian J., 2006, 1, 370.
Scheme 11 Proposal for the role of epoxide 12 in the biosynthesis of
taxa-4(20),11(12)-dien-5a-ol (4).
the taxol biosynthetic pathway. We have shown that the major,
naturally occurring, 4(5)-alkene isomer of taxadiene 3 can be
converted to taxa-4(20),11(12)-dien-5a-ol (4) via the epoxide 12,
and this suggests that the 4(5)-3 and 4(20)-6 alkene isomers of
taxadiene are processed differently by taxadiene hydroxylase
(Scheme 11).19
It is possible that 4(5)-alkene isomer 3 is epoxidised to
produce 12, which is then rearranged to 4, by the action of the
reduced form of the hydroxylase 11. In contrast, the 4(20)-
alkene isomer 6 could be converted directly to 4 via the accepted
H-atom abstraction mechanism. The involvement of epoxide 12
in the pathway provides an explanation for the lack of a signif-
icant primary kinetic isotope effect and the presence of an
inverse secondary isotope effect when deuterium labelled
[C20–2H3]-taxadiene (7) was oxidized by taxadiene hydroxylase.
The labelled C20 methyl likely plays only a small role in the
epoxidation process (i.e. leads to small inverse isotope effect),
and loss of a proton from C20 in an intermediate such as 19
(Scheme 8) is unlikely to be rate-limiting.
3 (a) R. A. Holton, R. R. Juo, H. B. Kim, A. D. Williams,
S. Harusawa, R. E. Lowenthal and S. Yogai, J. Am. Chem.
Soc., 1988, 110, 6558; (b) S. M. Rubenstein and
R. M. Williams, J. Org. Chem., 1995, 60, 7215; (c) Q. Huang,
J. D. Pennington, H. J. Williams and A. I. Scott, Synth.
Commun., 2006, 36, 2577; (d) A. Mendoza, Y. Ishihara and
P. S. Baran, Nat. Chem., 2012, 4, 21; (e) Y. Ishihara,
A. Mendoza and P. S. Baran, Tetrahedron, 2013, 69, 5685; (f)
N. C. Wilde, M. Isomura, A. Mendoza and P. S. Baran, J.
Am. Chem. Soc., 2014, 136, 4909.
Conclusions
In this study, we have shown that taxa-4(5),11(12)-diene (3) can
be isolated from the fruit of metabolically engineered tomatoes
using our new optimised procedure. Furthermore, we have
shown that taxadiene (3) can be epoxidised in a regio- and
diastereoselective manner to provide taxadiene-4(5)-epoxide
(12), and that this epoxide can be rearranged to give taxa-
4(20),11(12)-dien-5a-ol (4) in 60% over the two chemical steps.
We have shown that the epoxide 12 is sensitive to acids, and that
both taxa-4(20),11(12)-dien-5a-ol (4), the known bridged ether
OCT (5) and the new oxacyclotaxane (OCT2) 15 can be obtained
from this material. We have shown that contrary to previous
speculation, taxadiene-4(5)-epoxide (12) is susceptible to rear-
rangement when exposed to an ironIII porphyrin, and these
observations combine to warrant reconsideration of the epoxide
12 as a chemically competent intermediate on the taxol
biosynthetic pathway.
4 (a) A. E. Koepp, M. Hezari, J. Zajicek, B. S. Vogel,
R. E. LaFever, N. G. Lewis and R. Croteau, J. Biol. Chem.,
¨
1995, 270, 8686; (b) M. Koksal, Y. Jin, R. M. Coates,
R. Croteau and D. W. Christianson, Nature, 2011, 469, 116.
5 (a) S. Jennewein, R. M. Long, R. M. Williams and R. Croteau,
Chem. Biol., 2004, 11, 379; (b) J. Hefner, S. M. Rubenstein,
R. E. B. Ketchum, D. M. Gibson, R. M. Williams and
R. Croteau, Chem. Biol., 1996, 3, 479.
6 (a) J. DeJong, Y. Liu, A. P. Bollon, R. M. Long, S. Jennewein,
D. Williams and R. B. Croteau, Biotechnol. Bioeng., 2006, 93,
212; (b) B. Engels, P. Dahm and S. Jennewein, Metab. Eng.,
2008, 10, 201.
Acknowledgements
7 D. Rontein, S. Onillon, G. Herbette, A. Lesot, D. Werck-
Reichhart, C. Sallaud and A. Tissier, J. Biol. Chem., 2008,
283, 6067.
We thank the EPSRC for providing DTG studentships for NAB
and BJM, and the University of Nottingham for additional
nancial support of this work.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.