Silylation of Allylic Esters Using Organodisilanes
J . Org. Chem., Vol. 61, No. 17, 1996 5787
ether (20 mL), washed with saturated NaHCO3 aqueous
solution (20 mL), and dried over anhydrous MgSO4. Kugelrohr
distillation afforded 3b in 92% yield (168 mg, 0.92 mmol; pot
temperature 80 °C/1 mmHg).
cis-3j:10 1H NMR δ -0.03 (s, 9H), 1.41 (q, J gem ) J ax-ax ) 12
Hz, 1H), 1.52-1.62 (m, 1H), 1.97-2.07 (m, 1H), 2.12-2.34 (m,
2H), 2.38-2.47 (m, 1H), 3.66 (s, 3H), 5.55-5.66 (m, 2H); 13C
NMR δ -3.82 (q), 25.9 (d), 27.0 (t), 27.7 (t), 40.1 (d), 123.5 (d),
127.3 (d), 175.9 (s).
Silyla t ion of Allylic Acet a t es (1) in t h e P r esen ce of
CF 3COOH. A typical procedure is described for the silylation
of 1g (entry 28). Toluene (5.5 mL) and Pd(DBA)2 (17 mg, 0.030
mmol) were placed in a 20 mL flask under argon atmosphere.
To the stirred deep purple solution were added heptadecane
(180 mg, 0.75 mmol; as an internal standard for GC analysis),
1g (176 mg, 1.0 mmol), 2a (293 mg, 2.0 mmol), and CF3COOH
(228 mg, 2.0 mmol) in this order. The solution was stirred at
room temperature for 12 h. Gas chromatograph analysis
showed that 3e was obtained in a 92% yield (E/Z ) 99/1).
Rea ction of 10a or 10b w ith 2a . In a 5 mm i.d. NMR
tube, 10a (20 mg, 0.03 mmol) or 10b (17 mg, 0.03 mmol) was
dissolved in argon-degassed toluene-d8 (0.5 mL). Hexameth-
yldisilane (2a ) (88 mg, 0.6 mmol) was added into the solution
at room temperature. Within a few seconds, a black powder
appeared. The liquid part was transferred through a short
Celite plug into another NMR tube. The formation of 3e was
3k : 1H NMR δ -0.01 (s, 9H), 1.40 (s, 2H), 1.39-1.66 (m,
2H), 1.71 (s, 3H), 1.70-1.75 (m, 1H), 1.85-1.96 (m, 2H), 1.96-
2.12 (m, 2H), 4.69 (s, 2H), 5.19 (m, 1H); 13C NMR δ -1.19 (q),
20.8 (q), 27.6 (t), 28.1 (t), 30.9 (t), 31.5 (t), 41.2 (d), 108.3 (t),
118.3 (d), 135.1 (s), 150.3 (s). Anal. Calcd for C13H24Si: C,
74.92; H, 11.61. Found: C, 74.84; H, 11.67.
3l: 1H NMR δ 0.00 (s, 9H), 0.91 (t, J ) 7.4 Hz, 3H), 0.93 (t,
J ) 7.4 Hz, 3H), 1.17-1.56 (m, 9H), 1.98-2.06 (m, 2H); 13C
NMR δ -3.17 (q), 13.6 (q), 13.9 (q), 22.3 (t), 23.2 (t), 31.2 (t),
32.8 (t), 35.1 (d), 128.0 (d), 131.7 (d). Anal. Calcd for C12H26
Si: C, 72.64; H, 13.21. Found: C, 72.69; H, 13.48.
-
3m :43,44 1H NMR δ 0.00 (s, 9H), 1.74 (ddd, J ) 6.4 Hz, 1.8
Hz, 0.8 Hz, 3H), 2.92 (d, J ) 10 Hz, 1H), 5.45 (dqd, J ) 15 Hz,
6.4 Hz, 0.8 Hz, 1H), 5.85 (ddq, J ) 15 Hz, 10 Hz, 1.6 Hz, 1H),
7.08-7.46 (m, 5H); 13C NMR δ -3.00 (q), 18.1 (q), 42.8 (d),
123.5 (d), 125.6 (d), 127.1 (d), 128.2 (d), 130.2 (d), 138.6 (s).
3n :44 1H NMR δ 0.07 (s, 9H), 1.22 (d, J ) 7.6 Hz, 3H), 1.83
(pd, J ) 7.6 Hz, 0.8 Hz, 1H), 6.25 (d, 16 Hz, 1H), 6.35 (dd, J
) 16 Hz, 7.6 Hz, 1H), 7.06-7.44 (m, 5H); 13C NMR δ -3.39
(q), 13.5 (q), 27.3 (d), 124.4 (d), 125.7 (d), 126.2 (d), 128.4 (d),
134.4 (d), 143.1 (s).
1
confirmed by H, 13C, and 29Si NMR spectra. The yield of 3e
was determined by GC using heptadecane as an internal
standard on Apieson grease L. The 29Si NMR spectrum is most
diagnostic of the formation of 5a (33.1 ppm; lit.17a 33.1 ppm)
or 5b (22.1 ppm, lit.17a 22.0 ppm).
3p : 1H NMR δ 0.00 (s, 3H), 0.01 (s, 3H), 1.02-1.81 (m, 7H),
1.37 (s, 2H), 1.43 (s, 3H), 4.39-4.32 (m, 2H), 4.90-4.96 (m,
1H), 7.04-7.07 (m, 3H), 7.20-7.27 (m, 2H); 13C NMR δ -2.73
(q), 20.8 (q), 26.6 (t), 28.0 (t), 30.9 (t), 31.5 (t), 41.0 (d), 108.3
(t), 119.1 (d), 127.6 (d), 128.8 (d), 133.0 (s), 133.6 (d), 134.4 (s),
150.2 (s). Anal. Calcd for C18H26Si: C, 79.93; H, 9.69.
Found: C, 80.22; H, 9.66.
Some products have been identified by comparison with
published spectral data; 3b,36 3c,37 3d ,38 3e,39,40 3f,40 and 3o.41
(E)-3a :42 1H NMR δ -0.01 (s, 9H), 0.89 (t, J ) 7.4 Hz, 3H),
1.28 (m, 10H), 1.40 (d, J ) 8 Hz, 2H), 1.97 (q, J ) 7.4 Hz, 2H),
5.24 (dt, J ) 15 Hz, 7.4 Hz, 1H), 5.37 (dt, J ) 15 Hz, 8 Hz,
1H); 13C NMR δ -1.94 (q), 14.2 (q), 22.7 (t), 22.8 (t), 29.2 (t),
29.3 (t), 30.2 (t), 32.0 (t), 32.9 (t), 126.0 (d), 129.2 (d); MS m/e
212 (M+).
3q: 1H NMR δ 0.22 (s, 6H), 1.45-1.59 (m, 5H), 1.60 (dd,
(Z)-3a :42 13C NMR δ -1.72 (q), 14.2 (q), 18.5 (t), 22.7 (t),
27.2 (t), 29.3 (t), 30.2 (t), 32.0 (t), 32.9 (t), 125.2 (d), 127.9 (d);
MS m/e 212 (M+).
3
J H-H ) 8.4 Hz, J H-F ) 5.2 Hz, 2H), 2.04-2.12 (m, 5H), 5.07
2
(tp, J ) 8.4 Hz, 1.2 Hz, 1H); 13C NMR δ -1.66 (q, J C-F ) 15
2
Hz), 17.5 (t, J C-F ) 13 Hz), 26.9 (t), 27.5 (t), 28.4 (t), 28.7 (t),
3g: 1H NMR δ 0.01 (s, 9H), 1.68 (dd, J ) 7.7 Hz, 1 Hz, 2H),
6.11 (dt, J ) 15 Hz, 7.7 Hz, 1H), 6.85 (d, J ) 15 Hz, 1H), 7.25-
8.05 (m, 7H); 13C NMR δ -1.74 (q), 24.5 (t), 123.2 (d), 124.1
(d), 125.5 (d), 125.6 (d), 125.70 (d), 125.73 (d), 128.5 (d), 131.1
(d), 131.2 (s), 133.7 (s), 136.4 (s); MS m/e 240 (M+). Anal. Calcd
for C16H20Si: C, 79.93; H, 8.38. Found: C, 79.80; H, 8.45.
(E)-3h : 13C NMR δ -3.21 (q), 15.8 (q), 17.70 (q), 17.8 (t),
25.8 (q), 26.9 (t), 40.0 (t), 119.7 (d), 124.7 (d), 127.7 (d), 128.9
(d), 131.0 (s), 133.0 (s), 133.6 (d), 139.3 (s). Anal. Calcd for
C18H28Si: C, 79.34; H, 10.36. Found: C, 79.21; H, 10.49.
(Z)-3h : 13C NMR δ -3.12 (q), 17.4 (t), 17.67 (q), 23.4 (q),
25.7 (q), 26.5 (t), 31.8 (t), 119.9 (d), 124.7 (d), 127.7 (d), 128.9
(d), 131.2 (s), 133.0 (s), 133.6 (d), 139.2 (s). Anal. Calcd for
C18H28Si: C, 79.34; H, 10.36. Found: C, 79.19; H, 10.40.
3i: 1H NMR δ -0.01 (s, 6H), 1.55 (d, J ) 6.8 Hz, 2H), 5.79-
3
37.3 (t), 113.5 (d, J C-F ) 1.6 Hz), 139.1 (s). Methylation of
3q with MeLi in THF at -40 °C afforded 3b quantitatively.
1
tr a n s-3r : H NMR δ 0.06 (s, 9H), 1.53-1.57 (m, 1H), 1.66
(td, J gem ) 12 Hz, J ax-ax ) 12 Hz, J ax-ex ) 5.7 Hz, 1H), 1.65-
1.67 (m, 3H), 1.71 (t, J ) 1.1 Hz, 3H), 1.84 (ddd, J gem ) 12 Hz,
J ex-ax ) 4.0 Hz, J ex-ex ) 1.8 Hz, 1H), 1.90-2.18 (m, 3H), 4.66-
4.70 (m, 2H), 5.27-5.31 (m, 1H); 13C NMR δ -0.50 (q), 20.5
(q), 24.77 (q), 30.5 (t), 30.74 (t), 31.8 (d), 39.4 (d), 108.3 (t),
118.5 (d), 135.7 (s), 150.3 (s). Anal. Calcd for C13H24Si: C,
74.92; H, 11.61. Found: C, 74.96; H, 11.59.
cis-3r (obtained as a 1:1 mixture of the cis- and trans-
isomers): 13C NMR δ -2.33 (q), 21.0 (q), 24.67 (q), 30.68 (t),
30.9 (t), 31.4 (d), 41.8 (d), 108.1 (t), 120.8 (d), 135.0 (s), 150.8
(s). Anal. Calcd for C13H24Si: C, 74.92; H, 11.61. Found (as
a 1:1 mixture of the cis- and trans-isomers): C, 74.89; H, 11.62.
5.94 (m, 2H), 6.64-6.86 (m, 3H), 6.91-6.94 (m, 2H), 7.11-
2
7.20 (m, 4H). 13C NMR δ -3.15 (q), 23.1 (t), 114.9 (d, J C-F
)
Ack n ow led gm en t. This work was supported by
Grant-in-Aid for Scientific Research on Priority Area of
Reactive Organometallics No. 06227228 from the Min-
istry of Education, Science and Culture, J apan. Finan-
cial supports from the Sumitomo Foundation and the
Asahi Glass Foundation are also gratefully acknowl-
edged.
20 Hz), 125.6 (d), 126.4 (d), 126.8 (d), 128.5 (d), 129.2 (d), 133.9
(s, J C-F ) 4.4 Hz), 135.6 (d, J C-F ) 7.3 Hz), 138.3 (s), 163.9
4
3
1
(s, J C-F ) 246 Hz).
tr a n s-3j:10 1H NMR δ 0.01 (s, 9H), 1.55-1.64 (m, 1H), 1.84
(dt, J gem ) 14 Hz, J eq-ax ) J eq-eq ) 4.2 Hz, 1H), 1.97 (ddd, J gem
) 14 Hz, J ax-ax ) 9.2 Hz, J ax-eq ) 6.6 Hz), 2.13-2.33 (m, 2H),
2.56-2.63 (m, 1H), 3.65 (s, 3H), 5.54-5.66 (m, 2H); 13C NMR
δ -2.82 (q), 25.1 (d), 25.7 (t), 26.9 (t), 37.6 (d), 51.6 (q), 122.5
(d), 127.8 (d), 176.1 (s).
Su p p or tin g In for m a tion Ava ila ble: 1H and 13C NMR
spectra of 3i, 3q, and cis-3r (6 pages). This material is
contained in libraries on microfiche, immediately follows this
article in the microfilm version of the journal, and can be
ordered from the ACS; see any current masthead page for
ordering information.
(36) Fleming, I.; Paterson, I. Synthesis 1979, 446.
(37) Pillot, J .-P.; De´le´ris, G.; Dunogue`s, J .; Calas, R. J . Org. Chem.
1979, 44, 3397.
(38) (a) Yoshida, J .; Muraki, K.; Funahashi, H.; Kawabata, N. J .
Org. Chem. 1986, 51, 3996. (b) Smith, J . G.; Drozda, S. E.; Petraglia,
S. P.; Quinn, N. R.; Rice, E. M.; Taylor, B. S.; Viswanathan, M. J . Org.
Chem. 1984, 49, 4112.
J O960345T
(39) Seyferth, D.; Wursthorn, K. R.; Lim, T. F. O.; Sepelak, D. J . J .
Organomet. Chem. 1979, 181, 293.
(40) Slutsky, J .; Kwart, H. J . Am. Chem. Soc. 1973, 95, 8678.
(41) Richter, W. J .; Neugebauer, B. Synthesis 1985, 1059.
(42) Sarkar, T. K.; Ghosh, S. K. Tetrahedron Lett. 1987, 28, 2061.
(43) Torii, S.; Tanaka, H.; Katoh, T.; Morisaki, K. Tetrahedron Lett.
1982, 23, 557.
(44) Tanigawa, Y.; Fuse, Y.; Murahashi, S.-I. Tetrahedron Lett. 1982,
23, 557.