8176
J. Am. Chem. Soc. 1996, 118, 8176-8177
Table 1. Selected Bond Distances (Å) and Angles (deg) for (a)
Cp2ZrH(DPB)(PMe3), (b) CpFe(CO)2(DPB), and (c)
Rh(PMe3)3(DPB)
Diphenylphosphidoboratabenzene: An Anionic
Analogue of Triphenylphosphine
Diego A. Hoic, William M. Davis, and Gregory C. Fu*
(a) Cp2ZrH(DPB)(PMe3)
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Zr-Cp
2.506
P(1)-Zr-H
P(1)-Zr-P(2)
P(2)-Zr-H
C(17)-P(1)-C(11)
C(17)-P(1)-Zr
C(17)-P(1)-B
C(11)-P(1)-Zr
C(11)-P(1)-B
Zr-P(1)-B
58(2)
115.09(5)
57(2)
100.1(2)
111.8(2)
106.6(2)
118.5(2)
104.4(3)
114.0(2)
(average Zr-C)
Zr-P(1)
Zr-P(2)
Zr-H
P(1)-C(17)
P(1)-C(11)
P(1)-B
2.738(1)
2.657(2)
1.81(5)
1.841(5)
1.848(6)
1.966(6)
ReceiVed May 10, 1996
Stimulated by its relationship to the ubiquitous triphenylphos-
phine ligand (1),1 we have prepared2 and begun to explore the
coordination chemistry of the diphenylphosphidoboratabenzene
anion (DPB; 2). DPB may be viewed as a negatively charged,
essentially isosteric, variant of PPh3; within this context,
comparative studies of PPh3 and DPB complexes, both for a
given metal and for metals which are adjacent in the periodic
table, could lead to useful new insights into reactivity.3 In this
communication, we report the first stage of our investigation
into the chemistry of DPB, specifically, synthetic and structural
work which establishes the viability of DPB as a ligand for an
array of transition metals.
(b) CpFe(CO)2(DPB)
Fe(1)-Cp
2.097
B(1)-P(1)-Fe(1)
115.3(3)
109.0(4)
106.8(3)
104.0(3)
114.7(3)
106.4(2)
95.4(3)
(average Fe-C)
Fe(1)-P(1)
Fe(1)-C(6)
Fe(1)-C(7)
P(1)-B(1)
B(1)-P(1)-C(21)
B(1)-P(1)-C(31)
C(31)-P(1)-C(21)
C(31)-P(1)-Fe(1)
C(21)-P(1)-Fe(1)
P(1)-Fe(1)-C(6)
P(1)-Fe(1)-C(7)
C(6)-Fe(1)-C(7)
2.276(2)
1.741(10)
1.743(10)
1.967(9)
1.840(8)
1.838(8)
1.170(9)
1.167(9)
P(1)-C(21)
P(1)-C(31)
C(6)-O(2)
C(7)-O(1)
92.3(3)
94.8(4)
(c) Rh(PMe3)3(DPB)
Rh-P(1)
Rh-P(2)
Rh-P(3)
Rh-P(4)
P(1)-B
P(1)-C(1)
P(1)-C(7)
2.299(2)
2.285(2)
2.307(2)
2.306(2)
1.927(8)
1.856(8)
1.871(7)
P(1)-Rh-P(2)
96.13(7)
146.36(8)
92.59(7)
93.60(8)
148.03(8)
95.96(8)
104.2(3)
109.3(3)
105.4(3)
123.5(3)
102.8(3)
110.5(3)
P(1)-Rh-P(3)
P(1)-Rh-P(4)
P(2)-Rh-P(3)
P(2)-Rh-P(4)
P(3)-Rh-P(4)
B-P(1)-Rh
B-P(1)-C(1)
B-P(1)-C(7)
C(1)-P(1)-Rh
C(1)-P(1)-C(7)
C(7)-P(1)-Rh
A wide range of DPB adducts can be generated through
treatment of transition metal halides with potassium diphenyl-
phosphidoboratabenzene (K-DPB). For example, reaction of
Cp2ZrHCl with K-DPB in the presence of PMe3 leads to
displacement of the chloride ligand and formation of Cp2ZrH-
(DPB)(PMe3) (3; eq 1). A single-crystal X-ray diffraction study
of this complex (Figure 1a; Table 1a)4 reveals a structure very
similar to that found for Cp2ZrH(SiPh3)(PMe3).5 The P-C
bonds of the DPB ligand are ∼0.12 Å shorter than the P-B
bond, and the ligand adopts a slightly distorted tetrahedral
geometry.
2). The X-ray crystal structure of 4 (Figure 1b; Table 1b)6
displays a three-legged piano-stool geometry typical of CpFeL2X
complexes, with a nearly staggered conformation about the
Fe-P bond (dihedral angle [Cp centroid-Fe(1)-P(1)-C(31)]
) -168°).7 As in the case of zirconium complex 3, the P-C
bonds of the DPB ligand of 4 are shorter than the P-B bond
(by ∼0.13 Å).
[CpFe(CO)2(PPh3)]+ and CpFe(CO)2(PPh2) are isoelectronic
with complex 4.8,9 Comparison of the C-O stretching frequen-
cies (Table 2) suggests that the iron atom of [CpFe(CO)2-
(PPh3)]+ is the least electron-rich and that of CpFe(CO)2(PPh2)
is the most electron-rich. It is important to note that the
diphenylphosphido group is unique among the three phosphorus
ligands in that it bears a “lone pair” which can contribute
electron density to the metal. The IR data as well as the Fe-
We have also established that the iodide of CpFe(CO)2I is
readily substituted by DPB, producing CpFe(CO)2(DPB) (4, eq
(1) For a review of phosphine complexes of transition metals, see: Dias,
P. B.; de Piedade, M. E. M.; Simoes, J. A. M. Coord. Chem. ReV. 1994,
135, 737-807.
(2) Qiao, S.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1996, 118, 6329-
6330.
(3) This general approach has proved to be extremely interesting in early
transition metal metallocene chemistry. For examples and leading references,
see: (a) Crowther, D. J.; Baenziger, N. C.; Jordan, R. F. J. Am. Chem. Soc.
1991, 113, 1455-1457. (b) Quan, R. W.; Bazan, G. C.; Kiely, A. F.;
Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4489-4490.
(4) Data for compound 3: A wheat-colored plate (0.08 × 0.09 × 0.39
mm; grown from toluene/reaction-mixture at -35 °C for three weeks) was
mounted with a glass fiber on a Siemens SMART/CCD three circle
diffractometer (ø fixed at 54.78°). Data collection was done at -120 °C
using Mo KR radiation. The crystal was found to be monoclinic, belonging
to the space group P21/c. The cell constants are a ) 9.1017(6) Å, b )
17.6952(12) Å, c ) 17.8481(12) Å, â ) 104.2750(10)°, V ) 2785.8(3)
Å3, Z ) 4, Fcalc ) 1.334 g/cm3. 10 886 reflections were collected, of which
3977 were unique (Rint ) 0.0550). Solution was done by direct methods.
The final refinement by full-matrix least-squares was done on F2 (3971
data, 312 parameters) and yielded R1 ) 0.0641 and wR2 ) 0.1104 (for
data with I > 2σ(I)); GOF ) 1.411. All computations were handled by the
Siemens software package (SMART, SAINT, SHELXTL).
(6) Data for compound 4: Orange plate (0.28 × 0.12 × 0.07 mm; from
pentane/toluene/THF at -35 °C). Monoclinic, C2/c, a ) 17.1939(14) Å, b
) 15.0376(13) Å, c ) 15.9249(13) Å, â ) 92.5420(10), V ) 4113.4(6)
Å3, Z ) 8, Fcalc ) 1.415 g/cm3. 5705 reflections, 1914 unique (Rint
0.0713). The final refinement (1898 data, 262 parameters) yielded R1
0.0649 and wR2 ) 0.1389 for data with I > 2σ(I); GOF ) 1.290.
)
)
(7) For a discussion, see: Brunner, H.; Hammer, B.; Kruger, C.;
Angermund, K.; Bernal, I. Organometallics 1985, 4, 1063-1068.
(8) (a) [CpFe(CO)2PPh3]Cl‚3H2O: Riley, P. E.; Davis, R. E. Organo-
metallics 1983, 2, 286-292. See also: Davison, A.; Green, M. L. H.;
Wilkinson, G. J. Chem. Soc. 1961, 3172-3177. (b) [CpFe(CO)2PPh3]+-
[(NC)2CC(CN)C(CN)2]-: Sim, G. A.; Woodhouse, D. I.; Knox, G. R. J.
Chem. Soc., Dalton Trans. 1979, 629-635. (c) [CpFe(CO)2PPh3]PF6: Janik,
T. S.; Krajkowski, L. M.; Churchill, M. R. J. Chem. Cryst. 1995, 25, 751-
754. [CpFe(CO)2PPh3]Cl‚3H2O, [CpFe(CO)2PPh3]+[(NC)2CC(CN)C(CN)2]-,
and [CpFe(CO)2PPh3]PF6 differ by less than 0.01 Å for all of the bond
distances reported in Table 2.
(5) Kreutzer, K. A.; Fisher, R. A.; Davis, W. M.; Spaltenstein, E.;
Buchwald, S. L. Organometallics 1991, 10, 4031-4035.
(9) CpFe(CO)2(PPh2): Burckett-St. Laurent, J. C. T. R.; Haines, R. J.;
Nolte, C. R.; Steen, N. D. C. T. Inorg. Chem. 1980, 19, 577-587.
S0002-7863(96)01574-0 CCC: $12.00 © 1996 American Chemical Society