10.1002/chem.201702507
Chemistry - A European Journal
FULL PAPER
[3](a)J. Kang, J. Rebek, Nature 1996, 382, 239-241; (b)J. Liu, L. Chen, H. Cui,
J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011-6061; (c)M.
Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Soc.
Rev. 2014, 43, 1660-1733; (d)M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N.
M. van Leeuwen, Chem. Soc. Rev. 2014, 43, 1734-1787; (e)F. Ortega-
Caballero, C. Rousseau, B. Christensen, T. E. Petersen, M. Bols, J. Am. Chem.
Soc. 2005, 127, 3238-3239; (f)K. Surendra, N. S. Krishnaveni, A. Mahesh, K.
R. Rao, J. Org. Chem. 2006, 71, 2532-2534; (g)V. Kunz, M. Schulze, D.
Schmidt, F. Würthner, ACS Energy Lett. 2017, 288-293; (h)L. Guy, J.-P.
Dutasta, A. Martinez, in Effects of Nanoconfinement on Catalysis (Ed.: R. Poli),
Springer International Publishing, Cham, 2017, pp. 1-15; (i)J. Meeuwissen, J.
N. H. Reek, Nat. Chem. 2010, 2, 615-621; (j)M. D. Pluth, R. G. Bergman, K. N.
Raymond, Acc. Chem. Res. 2009, 42, 1650-1659; (k)M. D. Levin, D. M. Kaphan,
C. M. Hong, R. G. Bergman, K. N. Raymond, F. D. Toste, J. Am. Chem. Soc.
2016, 138, 9682-9693; (l)D. M. Kaphan, M. D. Levin, R. G. Bergman, K. N.
Raymond, F. D. Toste, Science 2015, 350, 1235-1238. (m) S. H. A. M.
Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek Chem. Soc. Rev.,
2015, 44, 433-448. (n) C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond,
Chem. Rev., 2015, 115, 3012–3035. (o) J. H. Jordan, B. C. Gibb, Chem. Soc.
Rev., 2015, 44, 547-585. (p) L. Catti, Q. Zhang, K. Tiefenbacher, Chem. Eur.J.,
2016, 22, 9060–9066.
122.47, 121.6, 110.0, 90.7, 68.3, 66.47, 56.3, 29.9, 29.3, 29.0, 28.8; ESI-
MS m/z: Calculated [M+H]+ = 331.1215; Found: 331.1300; Melting point:
238 C. Elemental analysis calcd (%) for (vacuum-dried) C17H18N2O5: C
61.81, H 5.49, N 8.48; found: C 61.68, N 5.32, N 8.57.
Synthesis of 2g: 2-(3-methylbut-2-enyloxy)benzaldehyde (7.6 mg, 0.04
mmol) and N,N’-dimethyl barbutaric acid (6.24 mg, 0.04 mmol) were added
with a solution of MT-1 (37.7 mg, 0.004 mmol) in nitromethane and the
mixture was stirred at room temperature for 22 h. After the completion of
reaction the solvent was evaporated completely and the residue was
extracted with chloroform. The crude product obtained upon evaporation
of the solvent was purified by preparative thin layer chromatography to
provide 2g in 73% yield (9.59 mg). 1H NMR (400 MHz, CDCl3): = 7.42 (d,
1H, J = 8Hz), 7.10-6.69 (m, 3H), 4.48-4.34 (m, 3H), 3.42 (s, 3H), 3.34 (s,
3H), 2.15-2.14 (m, 1H), 1.63, (s, 3H), 1.23 (s, 3H); 13C NMR (100 MHz,
CDCl3): = 155.9, 153.9, 151.6, 130.2, 128.3, 123.3, 121.6, 116.2, 89.0,
84.4, 65.2, 39.2, 29.4, 29.3, 28.6, 24.3; ESI-MS m/z: Calculated [M+H]+ =
329.1423; Found: 329.1494; Melting point: 205 C. Elemental analysis
calcd (%) for (vacuum-dried) C18H20N2O4: C 65.84, H 6.14, N 8.53; found:
C 65.91, H 6.05, N 8.71.
[4](a)J. Yano, V. Yachandra, in XAFS Techniques for Catalysts, Nanomaterials,
and Surfaces (Eds.: Y. Iwasawa, K. Asakura, M. Tada), Springer International
Publishing, Cham, 2017, pp. 451-465; (b)Y. Tu, F. Peng, A. Adawy, Y. Men, L.
K. E. A. Abdelmohsen, D. A. Wilson, Chem. Rev. 2016, 116, 2023-2078; (c)N.
Le Poul, Y. Le Mest, I. Jabin, O. Reinaud, Acc. Chem. Res. 2015, 48, 2097-
2106; (d)S. Chatterjee, K. Sengupta, S. Hematian, K. D. Karlin, A. Dey, J. Am.
Chem. Soc. 2015, 137, 12897-12905; (e)T. C. Brunold, Proc. Natl. Acad. Sci.
U.S.A. 2007, 104, 20641-20642.
Synthesis of 2h: 2h was obtained by following the same protocol as
applied for 2g starting with 5-bromo-2-(3-methylbut-2-enyloxy)
benzaldehyde (8.04 mg, 0.04 mmol) and N,N’-dimethyl barbutaric acid
(6.24 mg, 0.04 mmol) and the product was obtained in 71% yield (11.6
mg). 1H NMR (400 MHz, CDCl3): = 7.55 (d, 1H, J = 4Hz), 7.19-7.16 (m,
1H), 6.69 (d, 1H, J = 8Hz), 4.42-4.40 (m, 2H), 4.31 (d, 1H, J = 8Hz), 3.43
[5](a)T. M. Bräuer, Q. Zhang, K. Tiefenbacher, Angew. Chem. Int. Ed. 2016, 55,
7698-7701; (b)Q. Zhang, L. Catti, V. R. I. Kaila, K. Tiefenbacher, Chem. Sci.
2017, 8, 1653-1657; (c)Y. Qiao, L. Zhang, J. Li, W. Lin, Z. Wang, Angew. Chem.
2016, 128, 12970-12974; (d)P. Ballester, M. Fujita, J. Rebek, Chem. Soc. Rev.
2015, 44, 392-393; (e)R. Kulasekharan, R. Choudhury, R. Prabhakar, V.
Ramamurthy, Chem. Commun. 2011, 47, 2841-2843; (f)Z. Qi, T. Heinrich, S.
Moorthy, C. A. Schalley, Chem. Soc. Rev. 2015, 44, 515-531; (g)P. Howlader,
P. Das, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2016, 138, 1668-
1676; (h)D. Samanta, S. Mukherjee, Y. P. Patil, P. S. Mukherjee, Chem. Eur. J.
2012, 18, 12322-12329; (i)W. Wang, Y.-X. Wang, H.-B. Yang, Chem. Soc. Rev.
2016, 45, 2656-2693; (j)M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew.
Chem. Int. Ed. 2009, 48, 3418-3438; (k)C. J. Hastings, M. P. Backlund, R. G.
Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2011, 50, 10570-10573.
(s, 3H), 3.34 (s, 3H), 2.13 (d, 1H, J = 4Hz), 1.61 (s, 3H), 1.21 (s, 3H); 13
C
NMR (100 MHz, CDCl3): = 164.3, 156.0, 153.1, 151.5, 132. 79, 131.3,
125.6, 118.1, 113.8, 88.4, 84.3, 65.3, 38.9, 29.4, 29.3, 28.6, 24.2; ESI-MS
m/z: Calculated [M+H]+ = 407.0528; Found: 407.0618; Melting point: 200
C. Elemental analysis calcd (%) for (vacuum-dried) C18H19BrN2O4: C
53.08; H 4.70, N 6.88; found: C 53.28, H 4.77, N 7.03.
Acknowledgements
[6](a)S. M. Jansze, M. D. Wise, A. V. Vologzhanina, R. Scopelliti, K. Severin,
Chem. Sci. 2017; (b)M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem.
Res. 2005, 38, 369-378; (c)R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem.
Rev. 2011, 111, 6810-6918; (d) X. Yan, T. R. Cook, J. B. Pollock, P. Wei, Y.
Zhang, Y. Yu, F. H., P. J. Stang, J. Am. Chem. Soc. 2014, 136, 4460-4463; (e)
G. Yu, T. R. Cook, Y. Li, X. Yan, D. Wu, L. Shao, J. Shen, G. Tang, F. Huang,
X. Chen, P. J. Stang, Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 13720-13725.
P.S.M. thanks the Science and Engineering Research Board
(New Delhi) for research grant [Grant No. EMR/2015/002353].
A.D. is grateful to UGC (New Delhi) for the Dr. D. S. Kothari
postdoctoral fellowship. X-ray diffraction experiments using the
synchrotron radiation for complex MT-1 were performed at the
Pohang Accelerator Laboratory in Korea.
[7](a)M. J. Wiester, P. A. Ulmann, C. A. Mirkin, Angew. Chem. Int. Ed. 2011, 50,
114-137; (b)H. Vardhan, M. Yusubov, F. Verpoort, Coord. Chem. Rev. 2016,
306, Part 1, 171-194; (c)Y.-R. Zheng, K. Suntharalingam, T. C. Johnstone, S. J.
Lippard, Chem. Sci. 2015, 6, 1189-1193; (d)F. Schmitt, J. Freudenreich, N. P.
E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink, B. Therrien, J. Am. Chem. Soc.
2012, 134, 754-757; (e)N. Ahmad, H. A. Younus, A. H. Chughtai, F. Verpoort,
Chem. Soc. Rev. 2015, 44, 9-25; (f)S. M. McNeill, D. Preston, J. E. M. Lewis, A.
Robert, K. Knerr-Rupp, D. O. Graham, J. R. Wright, G. I. Giles, J. D. Crowley,
Dalton Trans. 2015, 44, 11129-11136; (g)A. Ahmedova, R. Mihaylova, D.
Momekova, P. Shestakova, S. Stoykova, J. Zaharieva, M. Yamashina, G.
Momekov, M. Akita, M. Yoshizawa, Dalton Trans. 2016, 45, 13214-13221; (h)N.
Singh, S. Jang, J.-H. Jo, D. H. Kim, D. W. Park, I. Kim, H. Kim, S. C. Kang, K.-
W. Chi, Chem. Eur. J. 2016, 22, 16157-16164; (i)M. L. Saha, X. Yan, P. J. Stang,
Acc. Chem. Res. 2016, 49, 2527-2539; (j)S. Shanmugaraju, P. S. Mukherjee,
Chem. Eur. J. 2015, 21, 6656-6666; (k)W. M. Bloch, Y. Abe, J. J. Holstein, C.
M. Wandtke, B. Dittrich, G. H. Clever, J. Am. Chem. Soc. 2016, 138, 13750-
13755; (l)N. Mittal, M. L. Saha, M. Schmittel, Chem. Commun. 2016, 52, 8749-
8752; (m)M. L. Saha, M. Schmittel, Inorg. Chem. 2016, 55, 12366-12375; (n)C.
A. Wiley, L. R. Holloway, T. F. Miller, Y. Lyon, R. R. Julian, R. J. Hooley, Inorg.
Chem. 2016, 55, 9805-9815; (o)L. R. Holloway, M. C. Young, G. J. O. Beran,
R. J. Hooley, Chem. Sci. 2015, 6, 4801-4806; (p)S. Karthikeyan, V.
Ramamurthy, J. Org. Chem. 2007, 72, 452-458.
Keywords: Supramolecular chemistry • self-assembly • cage
compounds • catalysis • coordination chemistry
[1](a)S. Sivakova, S. J. Rowan, Chem. Soc. Rev. 2005, 34, 9-21; (b)D. Philp, J.
F. Stoddart, Angew. Chem. Int. Ed. 1996, 35, 1154-1196; (c)J. M. Zayed, N.
Nouvel, U. Rauwald, O. A. Scherman, Chem. Soc. Rev. 2010, 39, 2806-2816;
(d)C. K. McLaughlin, G. D. Hamblin, H. F. Sleiman, Chem. Soc. Rev. 2011, 40,
5647-5656; (e)G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-
2421; (f)B. Philip, Nanotechnology 2002, 13, R15; (g)J.-M. Lehn, Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 4763-4768; (h)N. C. Gianneschi, M. S. Masar, C. A.
Mirkin, Acc. Chem. Res. 2005, 38, 825-837; (i)Y. Ueda, H. Ito, D. Fujita, M.
Fujita, J. Am. Chem. Soc. 2017.
[2](a)T. L. Poulos, B. C. Finzel, A. J. Howard, J. Mol. Biol. 1987, 195, 687-700;
(b)M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will, A. C. T.
North, Nature 1960, 185, 416-422; (c)T. L. Poulos, Chem. Rev. 2014, 114,
3919-3962; (d)F. Berkovitch, Y. Nicolet, J. T. Wan, J. T. Jarrett, C. L. Drennan,
Science 2004, 303, 76-79; (e)T. V. Vendelboe, P. Harris, Y. Zhao, T. S. Walter,
K. Harlos, K. El Omari, H. E. M. Christensen, Sci. Adv. 2016, 2.
[8]B. Roy, A. K. Ghosh, S. Srivastava, P. D'Silva, P. S. Mukherjee, J. Am. Chem.
Soc. 2015, 137, 11916-11919.
This article is protected by copyright. All rights reserved.