C O M M U N I C A T I O N S
Scheme 1. Plausible Mechanism
Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 1998;
Vol. 2, Part 2, Chapter 29. (c) Corey, Y. J. In AdVances in Silicon
Chemistry; Larson, G. L., Ed.; JAI: Greenwich, CT, 1991; Vol. 1, p 327-
387. (d) Marciniec, B. ComprehensiVe Handbook on Hydrosilylation;
Pergamon Press: Oxford, 1992. (e) Marciniec, B. In Applied Homogeneous
Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W.
A., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; Vol.
1, p 491-512.
(2) (a) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc., Perkin Trans.
1 1981, 2527-2532. (b) Hayami, H.; Sato, M.; Kanemoto, S.; Morizawa,
Y.; Oshima, K.; Nozaki, H. J. Am. Chem. Soc. 1983, 105, 4491-4492.
(c) Okuda, Y.; Wakamatsu, K.; Tu¨ckmantel, W.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1985, 26, 4629-4632. (d) Fugami, K.; Hibino, J.;
Nakatsukasa, S.; Matsubara, S.; Oshima, K.; Utimoto, K.; Nozaki, H.
Tetrahedron 1988, 44, 4277-4292. (e) Suginome, M.; Nakamura, H.;
Ito, Y. Chem. Commun. 1996, 2777-2778. (f) Nakamura, S.; Uchiyama,
M.; Ohwada, T. J. Am. Chem. Soc. 2004, 126, 11146-11147.
(3) Recent advances in regio- and stereoselective hydrosilylation of terminal
alkynes. (a) Takeuchi, R.; Nitta, S.; Watanabe, D. J. Org. Chem. 1995,
60, 3045-3051. (b) Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K.
Org. Lett. 2002, 4, 2825-2827. (c) Maifeld, S. V.; Tran, M. N.; Lee, D.
Tetrahedron Lett. 2004, 46, 105-108. (d) Sato, A.; Kinoshita, H.;
Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 2217-2220. (e) Aneetha,
H.; Wu, W.; Verkade, J. G. Organometallics 2005, 24, 2590-2596.
(4) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem.
1993, 456, 45-47.
Scheme 2
(5) Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. Angew.
Chem., Int. Ed. Engl. 1980, 19, 928.
(6) Takeshita, K.; Seki, Y.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Org.
Chem. 1987, 52, 4864-4868.
(7) (a) Kakiuchi, F.; Nogami, K.; Chatani, N.; Seki, Y.; Murai, S. Organo-
metallics 1993, 12, 4748-4750. (b) Takeuchi, R.; Yasue, H. Organome-
tallics 1996, 15, 2098-2102.
We are tempted to assume the reaction mechanism for the
silylation of alkenes with silacyclobutanes as follows (Scheme 1).
Initial oxidative addition of silacyclobutanes to zerovalent nickel
species 7 followed by insertion of alkene 1 to the Si-Ni bond of
8 gives the nickelasilacycle 9.14 In the case of the benzene-fused
silacyclobutane 4, the oxidative addition of sp2C-Si bond to Ni-
(0) is preferable to that of the benzylic sp3C-Si bond.15 Subsequent
â-H elimination16 followed by reductive elimination produces 3 or
5 along with the starting zerovalent nickel complex to complete
the catalytic cycle. The result of the silylation of deuterio-1f was
consistent with our plausible mechanism (Scheme 2).
In conclusion, we have found the efficient nickel catalyst system
for silylation of terminal alkenes with silacyclobutanes. The reaction
provides a facile and straightforward access to vinylsilanes from
terminal alkenes in a highly regio- and stereoselective fashion.
Further studies to improve the catalytic turnover and frequency
parameter are currently underway.
(8) Gordon, M. S.; Boatz, J. A.; Walsh, R. J. Phys. Chem. 1989, 93, 1584-
1585.
(9) (a) Matsumoto, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1990, 31,
6055-6058. (b) Matsumoto, K.; Miura, K.; Oshima, K.; Utimoto, K.
Tetrahedron Lett. 1991, 32, 6383-6386. (c) Matsumoto, K.; Miura, K.;
Oshima, K.; Utimoto, K. Tetrahedron Lett. 1992, 33, 7031-7034. (d)
Matsumoto, K.; Yokoo, T.; Oshima, K.; Utimoto, K.; Rahman, N. A. Bull.
Chem. Soc. Jpn. 1994, 67, 1694-1700. (e) Matsumoto, K.; Oshima, K.;
Utimoto, K. J. Org. Chem. 1994, 59, 7152-7155. (f) Okada, K.;
Matsumoto, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1995, 36,
8067-8070.
(10) (a) Sakurai, H.; Imai, T. Chem. Lett. 1975, 891-894. (b) Denmark, S.
E.; Griedel, B. D.; Coe, D. E.; Schnute, M. E. J. Am. Chem. Soc. 1994,
116, 7026-7043. (c) Tanaka, Y.; Yamashita, H.; Tanaka, M. Organo-
metallics 1996, 15, 1524-1526. (d) Bhanu, P. S. C.; Tanaka, Y.;
Yamashita, H.; Tanaka, M. Chem. Commun. 1996, 1865-1866. (e)
Hatanaka, Y.; Watanabe, M.; Onozawa, S.; Tanaka, M.; Sakurai, H. J.
Org. Chem. 1998, 63, 422-423. (f) Tanaka, Y.; Nishigaki, A.; Kimura,
Y.; Yamashita, M. Appl. Organomet. Chem. 2001, 15, 667-670. (g)
Sunderhaus, J. D.; Lam, H.; Dudley, B. Org. Lett. 2003, 5, 4571-4573.
(11) Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2006, 8, 483-485.
(12) See Supporting Information for the optimization studies.
(13) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268-270. (b) Trost,
B. M.; Machaek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895-1898. (c)
Denmark, S. E.; Tymonko, S. A. J. Am. Chem. Soc. 2005, 127, 8004-
8005.
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research from MEXT, Japan. K.H. acknowledges
JSPS for financial support.
(14) Silacyclobutanes were found to undergo oxidative addition to platinum,
palladium, and cobalt complexes. (a) Yamashita, H.; Tanaka, M.; Honda,
K. J. Am. Chem. Soc. 1995, 117, 8873-8874. (b) Tanaka, Y.; Yamashita,
H.; Shimada, S.; Tanaka, M. Organometallics 1997, 16, 3246-3248. (c)
Agenet, N.; Mirebeau, J.-H.; Petit, M.; Thouvenot, R.; Gandon, V.;
Malacria, M.; Aubert, C. Organometallics 2007, 26, 819-830.
(15) The oxidative addition of the benzylic sp3 C-Si bond to Ni(0) would
cause the formations of 6d and 6i (Table 2, entries 1 and 2) (see Supporting
Information for details).
Supporting Information Available: Experimental details, char-
acterization data for new compounds. This material is available free
References
(16) The â-H elimination in a similar seven-membered palladasilacycle was
suggested (see ref 9d).
(1) (a) Hiyama, T.; Kusamoto, T. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, Chapter
3.12. (b) Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organosilicon
JA070938T
9
J. AM. CHEM. SOC. VOL. 129, NO. 19, 2007 6095