10.1002/anie.201704006
Angewandte Chemie International Edition
COMMUNICATION
Dev. 2016, 20, 327; q) D. Cambie, C. Bottecchia, N. J. W. Straathof, V.
Hessel, T. Noel, Chem. Rev. 2016, 116, 10276; r) S. Kobayashi, Chem.
Asian J. 2016, 11, 425. s) L. Degennaro, C. Carlucci, S. de Angelis, R.
Luisi, J. Flow Chem. 2016, 6, 136.
[3]
For selected recent examples, see: a) T. Tsubogo, H. Oyamada, S.
Kobayashi, Nature 2015, 520, 329; b) R. Telmesani, S. H. Park, T.
Lynch-Colameta, A. B. Beeler, Angew. Chem. Int. Ed. 2015, 54, 11521;
Angew. Chem. 2015, 127, 11683; c) L. Vanoye, M. Pablos, C. de
Bellefon, A. Favre-Reguillon, Adv. Synth. Catal. 2015, 357, 739; d) A.
Nagaki, Y. Tsuchihashi, S. Haraki, J. Yoshida, Org. Biomol. Chem. 2015,
13, 7140; e) H. Kim, H. Lee, D. Kim, Angew. Chem. Int. Ed. 2016, 55,
1422, Angew. Chem. 2016, 128, 1444; f) A. Adamo, R. L. Beingessner,
M. Behnam, J. Chen, T. F. Jamison, K. F. Jensen, J. -C. M. Monbaliu, A.
S. Myerson, E. M. Revalor, D. R. Snead, T. Stelzer, N. Weeranoppanant,
S. Y. Wong, P. Zhang, Science 2016, 352, 61; g) T. Fukuyama, Y. Fujita,
M. A. Rashid, I. Ryu, Org. Lett. 2016, 18, 5444; h) L. Degennaro, D.
Maggiulli, C. Carlucci, F. Fanelli, G. Romanazzi, R. Luisi, Chem.
Commun. 2016, 52, 9554; i) A. Nagaki, T. Takahashi, J. Yoshida, Anew.
Chem. Int. Ed. 2016, 55, 5327. Angew. Chem. 2016, 128, 5413; j) J. -S.
Poh, S. Makai, T. v. Keutz, D. N. Tran, C. Battilocchio, P. Pasau, S. V.
Ley, Angew. Chem. Int. Ed. 2017, 56, 1864; Angew. Chem. 2017, 129,
1890; k) D. Cambie, F. Zhao, V. Hessel, M. G. Debije, T. Noel, Angew.
Chem. Int. Ed. 2017, 56, 1050; Angew. Chem. 2017, 129, 1070; l) J. L.
Monteiro, P. F. Carneiro, P. Elsner, D. Roberge, P. G. M. Wuts, K. Kurjan,
B. Gutmann, C. O. Kappe, Chem. Eur. J. 2017, 23, 176; m) P. Xie, K.
Wang, P. Wang, Y. Xia, G. Luo, AIChE J. 2017, 63, 1002; n) X. Tang, R.
K. Allemann, T. Wirth, Eur. J. Org. Chem. 2017, 414.
Experimental Section
General method.
A flow microreactor system consisting of two
micromixers (M1 and M2) and two microtube reactors (R1 and R2) was
used. The reaction system was immersed in a cooling bath (T oC). A
solution of substrate 1 (0.1 M in THF, 6 mL/min) and a solution of n-BuLi
(0.42 M in hexane, 1.5 mL/min) were introduced to M1 (inner diameter
Φ=250 μm) by syringe pumps. The resulting solution was passed through
R1 and was mixed with a solution of electrophile (0.22 M in THF, 3.0
mL/min) in M2 (Φ=500 μm). The resulting solution was passed through R2
(Φ=1000 μm, length=450 cm; 50 cm at T oC and 400 cm at 25 oC). After a
steady state was reached, the product solution was collected for 30 s,
while being quenched with saturated NH4Cl aqueous solution. The crude
product was extracted with diethyl ether (15 mL x 3) washed with brine (15
mL). The organic phase was dried over Na2SO4 and concentrated. The
crude product was purified by column chromatography.
Acknowledgements
This work was partially supported by the Grant-in-Aid for Scientific
Research (S) (no. 26220804) and the Grant-in-Aid for Young
Scientists (B) (no. 16K17898).
[4]
[5]
a) A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae, J. Yoshida, J. Am.
Chem. Soc. 2005, 127, 11666; b) J. Yoshida, Chem. Commun. 2005,
4509; c) J. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14,
7450; d) P. J. Nieuwland, K. Koch, N. van Harskamp, R. Wehrens, J. C.
M. van Hest, F. P. J. T. Rutjes, Chem. Asian J. 2010, 5, 799; e) J.
Yoshida, Chem. Rec. 2010, 10, 332; f) J. Yoshida, Y. Takahashi, A.
Nagaki, Chem. Commun. 2013, 49, 9896.
Keywords: Intramolecular rearrangement • flow chemistry •
microreactor • Fries rearrangement • reactive intermediates
[1]
For books on flow chemistry and microreactor synthesis, see: a) V.
Hessel, S. Hardt, H. Lowe, Chemical Micro Process Engineering, Wiley-
VCH, Weinheim, 2004; b) Micro Process Engineering; (Eds.: V. Hessel,
A. Renken, J. C. Schouten, J. Yoshida), Wiley-Blackwell, Oxford, 2009;
c) Microreactors in Organic Chemistry and Catalysis, 2nd ed. (Ed.: T.
Wirth), Wiley, Hoboken, 2013; d) Sustainable Flow Chemistry: Methods
and Applications; (Ed. L. Vaccaro), Wiley-VCH, Weinheim, 2017.
a) A. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2008, 47, 7833;
Angew. Chem. 2008, 120, 7951; b) A. Nagaki, E. Takizawa, J. Yoshida,
J. Am. Chem. Soc. 2009, 131, 1654; c) A. Nagaki, H. Kim, J. Yoshida,
Angew. Chem. Int. Ed. 2009, 48, 8063; Angew. Chem. 2009, 121, 8207;
d) A. Nagaki, H. Kim, Y. Moriwaki, C. Matsuo, J. Yoshida, Chem. Eur. J.
2010, 16, 11167; e) A. Nagaki, H. Kim, C. Matsuo, H. Usutani, J. Yoshida,
Org. Biomol. Chem. 2010, 8, 1212; f) A. Nagaki, C. Matsuo, S. Kim, K.
Saito, A. Miyazaki, J. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 3245;
Angew. Chem. 2012, 124, 3299; g) A. Nagaki, K. Imai, S. Ishiuchi, J.
Yoshida, Angew. Chem. Int. Ed. 2015, 54, 1914; Angew. Chem. 2015,
127, 1934.
[2]
For reviews on flow chemistry and microreactor synthesis, see: a) R. L.
Hartman, K. F. Jensen, Lab Chip 2009, 9, 2495; b) J. P. McMullen, K. F.
Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19; c) D. Webb, T. F. Jamison,
Chem. Sci. 2010, 675; d) J. Yoshida, H. Kim, A. Nagaki, ChemSusChem
2011, 4, 331; e) J. Yoshida, K. Saito, T. Nokami, A. Nagaki, Synlett 2011,
1189; f) C. Wiles, P. Watts, Green Chem. 2012, 14, 38; g) Kirschning, L.
Kupracz, J. Hartwig, Chem. Lett. 2012, 41, 562; h) D. T. McQuade, P. H.
Seeberger, J. Org. Chem. 2013, 78, 6384; i) K. S. Elvira, X. C. Solvas,
R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905; j) J. C. Pastor,
D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849; k) I. R.
Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519; l) J. Yoshida,
A. Nagaki, D. Yamada, Drug Discovery Today Technol. 2013, 10, e53;
m) T. Fukuyama, T. Totoki, I. Ryu, Green Chem. 2014, 16, 2042; n) B.
Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54,
6688; Angew.Chem. 2015, 127, 6788; o) M. Movsisyan, E. I. P. Delbeke,
J. K. E. T. Berton, C. Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc.
Rev. 2016, 45, 4892; p) C. J. Mallia, I. R. Baxendale, Org. Process Res.
[6]
a) K. Fries, G. Finck, Ber. Dtsch. Chem. Ges. 1908, 41, 4271; b) R. Martin,
Org. Prep. Proced. Int. 1992, 24, 369; c) M. P. Sibi, V. Snieckus, J. Org.
Chem. 1983, 48, 1935; d) J. C. Riggs, K. J. Singh, M. Yun, D. B. Collum,
J. Am. Chem. Soc. 2008, 130, 13709.
[7]
[8]
H. Kim, K. -I. Min, K. Inoue, D. J. Im, D. -P. Kim, J. Yoshida, Science
2016, 352, 691.
a) J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734; b) J. E.
Baldwin, R. C. Thomas, L. I. Kruse, L. Silberman, J. Org. Chem. 1977,
42, 3846.
This article is protected by copyright. All rights reserved.