B. Groetzl et al. / Tetrahedron Letters 47 (2006) 9147–9150
9149
9. Faitg, T.; Soulie, J.; Lallemand, J-Y.; Ricard, L. Tetra-
hedron: Asymmetry 1999, 10, 2165–2174.
10. The a- and b-faces are defined as used in tropane systems.
11. All new compounds gave satisfactory spectroscopic and
microanalytical and/or HRMS analysis.
NHCbz
NHCbz
NCbz
NCbz
HO
HO
b
c
HO
HO
O
HO
7b
8b
8c
18
12. For 9, dH (300 MHz, CDCl3): 1.30–1.47 (1H, m, a-H3),
1.67–1.74 (1H, m, b-H3), 1.85–1.97 (3H, m, 2 · H4 &
1 · H2), 2.01–2.10 (1H, m, 1 · H2), 3.91 (1H, d,
J = 8.3 Hz, H7), 4.03 (1H, dd, J = 8.3, 1.8 Hz, H6), 4.48
(1H, dd, J = 3.8, 1.8 Hz, H1), 4.58 (1H, br s, H5), 5.21
(2H, s, CH2–Ph), 7.29–7.40 (5H, m, Ph). dC (75 MHz,
CDCl3) 19.1 (CH2), 28.9 (CH2), 29.8 (CH2), 57.5 (CH),
65.1 (CH), 65.8 (CH), 67.7 (CH2), 82.0 (CH), 128.1 (CH),
128.2 (CH), 128.5 (CH), 136.1 (C), 155.5 (C). Accurate
mass (FAB): found: 294.1342 (M+H+); calcd. for
C15H20NO5: 294.1342.
13. Donohoe, T. J.; Mitchell, L.; Waring, M. J.; Helliwell,
M.; Bell, A.; Newcombe, N. J. Org. Biol. Chem. 2003, 1,
2173–2186.
14. Noguchi, H.; Aoyama, T.; Shioiri, T. Heterocycles 2002,
58, 471–504.
d
a
+ Cl-
+ Cl-
NHCbz
NH3
O
NH2
HO
HO
HO
HO
HO
HO
HO
HO
17
19-mono
19-bicycl
Scheme 4. Reagents and conditions: (a) OsO4, NMO, acetone/H2O, rt,
72 h (72%); (b) Jones reagent, acetone, 0 ꢁC, 5 min (77%–8b:8c; 1:2); (c)
OsO4, NMO, acetone/H2O, rt, 72 h (68%); (d) Pd(OAc)2, H2,
EtOH:HOAc 18:1, rt; then H2O/HCl (68%).
15. Pulz, R.; Al-Harassi, A.; Reissig, H.-U. Org. Lett. 2002, 4,
2353–2355.
16. Ritter, A. R.; Miller, M. J. J. Org. Chem. 1994, 59, 4602–
4611.
tion gave the novel homocalystegine 19 which again
exists mainly as the monocyclic isomer (19-mono:19-
bicycl = 10:3).27
17. Justice, D. E.; Malpass, J. R. Tetrahedron 1996, 52, 11963–
11976.
18. Ketone 8a exists solely as the monocyclic tautomer
shown—see Ref. 6.
19. Compound 13 exists solely as the monocyclic keto-
tautomer shown. The stereostructure of 13 was confirmed
by protection of the diol as the isopropylidene acetal to
give 11 and comparison to the material synthesised by the
route shown in Scheme 2.
20. For 15-mono (assignments based on calystegine number-
ing); dH (300 MHz, D2O): 1.52–1.75 (2H, m, 1 · H3 &
1 · H4), 1.80–1.95 (2H, m, 1 · H3 & 1 · H4), 2.30 (1H,
dddd, J = 2.1, 6.6, 10.0, 12.8 Hz, 1 · H2), 2.57 (1H, dt,
J = 12.8, 3.5 Hz, 1 · H2), 3.50–3.59 (1H, m, H5), 4.04 (br
s, 1H, H6), 4.70 (1H, H7 overlap with D2O); dC (75 MHz,
D2O) 17.7 (CH2), 26.4 (CH2), 40.2 (CH2), 53.9 (CH), 72.8
(CH), 77.1 (CH), 212.5 (C); accurate mass (FAB): found:
160.0973 (MÀClÀ); calcd. for C7H14NO3: l60.0974.
Selected signals for 15-bicycl; dH (300 MHz, D2O): 3.99
(1H, d, J = 6.9 Hz, H6 or H7), 4.19 (1H, d, J = 6.9 Hz, H6
or H7), all other 1H signals overlap with 15-mono; dC
(75 MHz, D2O) 16.2 (CH2), 24.1 (CH2), 32.4 (CH2), 61.9
(C), 69.8 (CH), 70.9 (CH), 92.8 (C).
In summary, we have reported the first synthesis of non-
natural calystegines 15 and 16 and the first homocalyste-
gine 19 in racemic form. Surprisingly, we have found
that these natural product analogues exist mainly as
the monocyclic keto-tautomer which is in contrast to
the bicyclic hemiaminal-form reported for the majority
of the calystegines isolated to date. Biological testing
of 15, 16 and 19 produced in the course of this work
is currently underway and these results together with
the synthesis of further calystegine analogues will be
reported in due course.
Acknowledgement
The authors thank the University of Leicester for finan-
cial support of this research.
References and notes
21. For 16-mono (assignments based on calystegine number-
ing); dH (300 MHz, D2O): 1.50–2.06 (4H, m, 2 · H3 &
2 · H4), 2.46 (1H, dddd, J = 16.5, 15.2, 8.1, 7.2 Hz,
1 · H2), 2.65 (1H, dt, J = 16.5, 5.6 Hz, 1 · H2), 3.45
(1H, dt, J = 3.2, 8.7 Hz, H5), 3.88 (1H, dd, J = 8.7,
2.4 Hz, H6), 4.47 (1H, d, J = 2.4 Hz, H7); dC (75 MHz,
D2O) 18.0 (CH2), 27.6 (CH2), 39.3 (CH2), 54.7 (CH), 71.9
(CH), 78.5 (CH), 214.9 (C); accurate mass (FAB): found:
160.0975 (MÀClÀ); calcd. for C7H14NO3: 160.0974.
22. The stereostructure of 17 was confirmed by X-ray
crystallographic analysis of the derivative 20.
1. Tepfer, D.; Goldmann, A.; Pamboukdjian, N.; Maille, M.;
´
´
Lepingle, A.; Chevalier, D.; Denarie, J.; Rosenberg, C.
J. Bacteriol. 1988, 170, 1153–1161.
2. Asano, N. Glycobiology 2003, 13, 93–104.
3. Iminosugars as Glycosidase Inhibitors: Nojirimycin and
Beyond; Stutz, A. E., Ed.; Wiley-VCH: Weinheim, 1999.
¨
4. Dra¨ger, B. Nat. Prod. Rep. 2004, 21, 211–223, and
references cited therein.
5. For examples, of calystegine analogues see—Garcia-
Moreno, M. I.; Mellet, C. O.; Fernandez, J. M. G. Eur.
J. Org. Chem. 2004, 1803–1819.
6. Justice, D. E.; Malpass, J. R. J. Chem. Soc., Perkin Trans.
1 1994, 2559–2564.
7. Smith, C. R.; Justice, D. E.; Malpass, J. R. Tetrahedron
1993, 49, 11037–11054.
8. For safety reasons we replaced the Me4NIO4 used in the
original preparations of 6a and 6b with n-Bu4NIO4—see
Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher,
S. R.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044–
1050.
O
NH
NHCbz
O
p-nitrobenzoyl chloride,
NEt3, DMAP
HO
HO
HO
20
O
O
HO
17
O2N