we demonstrated that a small amount of CuIÀphenan-
14a
throline complex engenders the cross-coupling reactions of
Table 1. Cross-Coupling of Aryl Iodides 1 with R-Silyldifluoro-
acetate 5a (Stoichiometric in Copper)
aryl/heteroaryl iodides with CF3SiEt3
and fluoral
derivatives14b to deliver trifluoromethylated arenes. Tri-
fluoromethyl copper intermediates (CF3CuL) contribute
to these transformations (both stoichimetric and catalytic
in copper). Compared with the chemistry of trifluoro-
methylation, that of difluoromethylation has been much
less studied. The use of difluoromethyl copper (HCF2Cu)
is anticipated to yield difluoromethylated aromatic com-
pounds (ArÀCF2H). There have been few reports on the
reactions of HCF2Cu species with electrophiles such as
allylic, propargylic, alkynyl, and benzyl halides.15,16 How-
ever, to the best of our knowledge, the cross-coupling of
HCF2Cu with aromatic halides has never been accom-
plished due to the lack of thermal stability of HCF2Cu
species. Herein, we describe a new reaction sequence
leading to an efficient synthesis of difluoromethylated
aromatic compounds 2 from aryl iodides 1 via 2-aryl-
2,2-difluoroacetates 3 (Scheme 1).
entry
Ar
solvent
yield/%a,b
1
4-NC-C6H4 (1a)
4-NC-C6H4 (1a)
4-NC-C6H4 (1a)
4-NC-C6H4 (1a)
3-NC-C6H4 (1b)
2-NC-C6H4 (1c)
4-O2N-C6H4 (1d)
4-EtO2C-C6H4 (1e)
3,4-Cl2-C6H3 (1f)
4-Br-C6H4 (1g)
4-Ph-C6H4 (1h)
Ph (1i)
DMF
8
2
CH3CN
DME
12
3
72
4
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
88 (71)
85 (69)
57 (44)
41 (29)
81 (73)
84 (73)
76 (54)
78 (68)
75c (40)
78 (72)
88 (87)
5
6
7
8
9
10
11
12
13
14
4-EtO-C6H4 (1j)
2-quinolyl (1k)
Scheme 1
a NMR yields, which were calculated by 19F NMR integration of
products 3 relative to the 2,2,2-trifluoroethanol internal standard. b The
values in parentheses indicate the isolated yields of 3. c Determined by
GC analysis using biphenyl as an internal standard.
wide repertoire of aromatic iodides 1 bearing electron-
withdrawing or -donating substituents underwent cross-
coupling reactions to provide the corresponding gem-
difluoroesters 3 in high yields (entries 4À14). En passant,
aryldifluoroacetates 3 have been used for several appli-
cations.18 To date, the reductive cross-coupling reactions
of bromo- or iododifluoroacetates with aryl harides by
the use of copper bronze are one of the most reliable
methods to prepare 2-aryl-2,2-difluoroacetates 3.19À22 In
these transformations, 2 equiv of copper are required to
generate CuÀCF2CO2R intermediates,19b which partici-
pate in cross-coupling with aryl halides. Compared to the
Initially, Cu-promoted cross-coupling reactions of
aryl iodides 1 with R-silyldifluoroacetates (5)17 were
examined. A mixture of 4-iodobenzonitrile (1a) and ethyl
2-(trimethylsilyl)-2,2-difluoroacetate (5a) in DMF was
heated at 60 °C for 15 h in the presence of CuI (1.0 equiv)
and KF (1.2 equiv) to afford aryldifluoroacetate 3a in only
8% NMR yield (Table 1, entry 1). After the survey of
reaction media (entries 2À4), DMSO was found to be
an effective solvent for the Cu-mediated transforma-
tion (entry 4).
(13) (a) Xiao, J.-C.; Ye, C.; Shreeve, J. M. Org. Lett. 2005, 7, 1963–
1965. (b) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc.
2008, 130, 8600–8601. (c) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A.
Organometallics 2008, 27, 6233–6235. (c) Kieltsch, I.; Dubinina, G. G.;
Hamacher, C.; Kaiser, A.; Torres-Nieto, J.; Hutchison, J. M.; Klein, A.;
Budnikova, Y.; Vicic, D. A. J. Fluorine Chem. 2010, 131, 1108–1112. (d)
Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060–5063. (e) Zhang, C.-P.;
Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew.
Chem., Int. Ed. 2011, 50, 1896–1900. (f) Knauber, T.; Arikan, F.;
Other examples of the selective formation of 2-aryl-2,
2-difluoroacetates 3 are given in Table 1 (entries 5À14).
Upon treatment with a stoichiometric amount of CuI, a
€
Roschenthaler, G.-V.; Gooben, L. J. Chem.;Eur. J. 2011, 17, 2689–
2697. (g) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem.
2011, 76, 1174–1176. (h) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 3793–3798. (i) Xu, J.;
Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem.
Commun. 2011, 47, 4300–4302. (j) Liu, T.-F.; Shen, Q.-L. Org. Lett.
2011, 13, 2342–2345. (k) Popov, I.; Lindeman, S.; Daugulis, O. J. Am.
Chem. Soc. 2011, 133, 9286–9289. (l) Weng, Z. Q.; Lee, R.; Jia, W. G.;
Yuan, Y. F.; Wang, W. F.; Feng, X.; Huang, K.-W. Organometallics
2011, 30, 3229–3232. (m) Li, Y. M.; Chen, T.; Wang, H. F.; Zhang, R.;
Jin, K.; Wang, X. N.; Duan, C. Y. Synlett 2011, 1713–1716. (n) Kawai,
H.; Furukawa, T.; Nomura, Y.; Tokunaga, E.; Shibata, N. Org. Lett.
2011, 13, 3596–3599.
(12) (a) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128,
4632–4641. (b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006,
128, 12644–12645. (c) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am.
Chem. Soc. 2010, 132, 2878–2879. (d) Wang, X.; Truesdale, L.; Yu, J.-Q.
J. Am. Chem. Soc. 2010, 132, 3648–3649. (e) Ye, Y.; Ball, N. D.; Kampf,
J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 14682–14687. (f) Cho,
E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald,
S. L. Science 2010, 328, 1679–1681. (g) Kino, T.; Nagase, Y.; Ohtsuka,
Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J.
Fluorine Chem. 2010, 131, 98–105. (h) Ball, N. D.; Gary, J. B.; Ye, Y.;
Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577–7584. (i) Loy, R. N.;
Sanford, M. S. Org. Lett. 2011, 13, 2548–2551. (j) Samant, B. S.;
Kabalka, G. W. Chem. Commun. 2011, 47, 7236–7238. (k) Mu, X.;
Chen, S. J.; Zhen, X. L.; Liu, G. S. Chem.;Eur. J. 2011, 17, 6039–6042.
(14) (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909–
1911. (b) Kondo, H.; Oishi, M.; Fujikawa, K.; Amii, H. Adv. Synth.
Catal. 2011, 353, 1247–1252.
Org. Lett., Vol. 13, No. 20, 2011
5561