Z. Kokan, S. I. Kirin
FULL PAPER
[8]
a) P. Etayoa, A. Vidal-Ferran, Chem. Soc. Rev. 2013, 42, 728–
754; b) D. J. Ager, A. H. M. de Vries, J. G. de Vries, Chem. Soc.
Rev. 2012, 41, 3340–3380; c) H. Shimizu, I. Nagasaki, K. Mats-
umura, N. Sayo, T. Saito, Acc. Chem. Res. 2007, 40, 1385–1393;
d) N. B. Johnson, I. C. Lennon, P. H. Moran, J. A. Ramsden,
Acc. Chem. Res. 2007, 40, 1291–1299.
a) I. D. Gridnev, T. Imamoto, Acc. Chem. Res. 2004, 37, 633–
644; b) W. Tangand, X. Zhang, Chem. Rev. 2003, 103, 3029–
3069; c) C. R. Landis, J. Halpern, J. Am. Chem. Soc. 1987, 109,
1746–1754.
The use of amino acids as the chiral source in asymmetric ca-
talysis was pioneered by Gilbertson et al., see: S. R. Gilbertson,
S. E. Collibee, A. Agarkov, J. Am. Chem. Soc. 2000, 122, 6522–
6523.
a) J. Wieland, B. Breit, Nat. Chem. 2010, 2, 832–837; b) B.
Breit, Angew. Chem. 2005, 117, 6976–6986; Angew. Chem. Int.
Ed. 2005, 44, 6816–6825.
a) P. Dydio, C. Rubay, T. Gadzikwa, M. Lutz, J. N. H. Reek,
J. Am. Chem. Soc. 2011, 133, 17176–17179; b) J. Meeuwissen,
J. N. H. Reek, Nat. Chem. 2010, 2, 615–621.
a) L. Pignataro, M. Boghi, M. Civera, U. Piarulli, C. Gennari,
Chem. Eur. J. 2012, 18, 10368–10381; b) L. Pignataro, M.
Boghi, M. Civera, S. Carboni, U. Piarulli, C. Gennari, Chem.
Eur. J. 2012, 18, 1383–1400.
a) N. C. Thacker, S. A. Moteki, J. M. Takacs, ACS Catal. 2012,
2, 2743–2752; b) J. M. Takacs, K. Chaiseeda, S. A. Moteki,
D. S. Reddy, D. Wu, K. Chandra, Pure Appl. Chem. 2006, 78,
501–509.
a) Y. Li, Y. Feng, Y.-M. He, F. Chen, J. Pan, Q.-H. Fan, Tetra-
hedron Lett. 2008, 49, 2878–2881; b) G. Erre, S. Enthaler, K.
Junge, S. Gladiali, M. Beller, Coord. Chem. Rev. 2008, 252,
471–491; c) T. Jerphagnon, J.-L. Renaud, C. Bruneau, Tetrahe-
dron: Asymmetry 2004, 15, 2101–2111.
reactions at room temp. before substrate addition, the reaction
flask was placed in a thermo-container filled with technical ethanol
(or 2-propanol), cooled by a cryostat device to –5 or –20 °C, and
the mixture was stirred vigorously overnight.
Catalytic Hydrogenation of Methyl (Z)-α-Acetamidocinnamate (S2).
(a) Catalysis at Atmospheric Pressure: The procedure described for
S1 was used with ligand (13.2 μmol, 2.2 mol-%), [(COD)-
Rh(CH3CN)2]BF4 (2.50 mg, 6 μmol, 1 mol-%) and S2 (70 mg,
0.3 mmol). Chiral fused silica capillary column [l-chirasil-Val; con-
ditions: 22 min at 170 °C; 40 °Cmin–1 to 190 °C, 60 kPa head col-
umn pressure; tR = 18.30 (R), 18.75 (S), 32.39 (substrate) min]. (b)
Catalysis at High Pressure: In an Eppendorf vial, Rh precursor and
the ligand were dissolved in CH2Cl2 (0.5 mL each) and mixed. The
yellow solution was added to a 10 mL beaker containing the sub-
strate and CH2Cl2 (4 mL). This was tightly sealed in an autoclave
and purged three times with H2 (13 bar) and finally stirred at 13 bar
for 2 h. The product was analyzed as detailed above.
[9]
[10]
[11]
[12]
[13]
Abbreviations: Amino acids are abbreviated by three or one letter
codes (for spectral assignation). The following non-standard ab-
breviations were used: H-BzA = H-NHCH2Ph (benzylamine), H-
PeA = H-NHCH(CH3)Ph (phenylethylamine), H-NeA = H-
NHCH(CH3)C10H7 (α-naphthylethylamine) and H-CeA = H-
NHCH(CH3)C6H11 (cyclohexylethylamine); see Scheme 2 for
structures.
[14]
[15]
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic procedures, NMR, mass and CD spectra of ligands
and complexes; gas chromatograms of catalytic products and de-
tailed stereochemical analysis.
[16]
[17]
[18]
Z. Kokan, S. I. Kirin, RSC Adv. 2012, 2, 5729–5737.
A. C. Laungani, B. Breit, Chem. Commun. 2008, 844–846.
With a prochiral catalytic metal, Laungani and Breit obtained
up to 51% ee in the studied asymmetric hydrogenation (deriva-
tives 1 in ref.[17]); by introducing additional chirality within the
coordination sphere of the catalytic metal center (double induc-
tion), selectivity up to 99% ee was obtained (derivatives 2 in
ref.[17]).
P. W. N. M. van Leeuwen, D. Rivillo, M. Raynal, Z. Freixa, J.
Am. Chem. Soc. 2011, 133, 18562–18565.
a) J. S. Park, J. N. Wilson, K. I. Hardcastle, U. H. F. Bunz, M.
Srinivasarao, J. Am. Chem. Soc. 2006, 128, 7714–7715; b) O.
Herd, A. Hessler, M. Hingst, P. Machnitzki, M. Tepper, O.
Stelzer, Catal. Today 1998, 42, 413–420.
a) S. I. Kirin, U. Schatzschneider, S. D. Koster, D. Siebler, N.
Metzler-Nolte, Inorg. Chim. Acta 2009, 362, 894–906; b) S. I.
Kirin, D. Wissenbach, N. Metzler-Nolte, New J. Chem. 2005,
29, 1168–1173.
L. A. Al-Momani, A. Lataifeh, Inorg. Chim. Acta 2013, 394,
176–183.
Acknowledgments
These results are based on work financed by the Unity Through
Knowledge Fund (UKF) (36/08), the Croatian Science Foundation
(HrZZ) (02.04/23) and the Ministry of Science, Education and
Sports (MSES) (098-0982904-2946). We thank COST Action
(CM1105) for financial support and SME Chirallica for using their
chiral analytics facility.
[19]
[20]
[1] J. Hagen, Industrial Catalysis: A Practical Approach, 2nd ed.,
Wiley-VCH, Weinheim, 2006.
[2] Chirality in Industry (Eds.: A. N. Collins, G. N. Sheldrake, J.
Crosby), John Wiley & Sons Ltd., Chichester, 1992.
[3] A. M. Thayer, Chem. Eng. News 2007, 85, 11–19.
[21]
[4] a) Z. Dong, Y. Wang, Y. Yin, J. Liu, Curr. Opin. Colloid Inter-
face Sci. 2011, 16, 451–458; b) P. J. Deuss, R. Heeten, W. Laan,
P. C. J. Ka me r, Chem. Eur. J. 2011, 17, 4680–4698.
[5] a) T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, Science 2012,
338, 500–503; b) A. Jain, G. W. Buchko, M. L. Reback, M.
O’Hagan, B. Ginovska-Pangovska, J. C. Linehan, W. J. Shaw,
ACS Catal. 2012, 2, 2114–2118; c) R. Sambasivan, Z. T. Ball,
J. Am. Chem. Soc. 2010, 132, 9289–9291.
[6] a) C. Wang, G. Jia, J. Zhou, Y. Li, Y. Liu, S. Lu, C. Li, Angew.
Chem. 2012, 124, 4398–4402; Angew. Chem. Int. Ed. 2012, 51,
9352–9355; b) A. J. Boersma, D. Coquiere, D. Geerdink, F. Ro-
sati, B. L. Feringa, G. Roelfes, Nat. Chem. 2010, 2, 991–995; c)
P. Fournier, R. Fiammengo, A. Jäschke, Angew. Chem. 2009,
121, 4490–4493; Angew. Chem. Int. Ed. 2009, 48, 4426–4429;
d) G. Roelfes, B. L. Feringa, Angew. Chem. 2005, 117, 3294;
Angew. Chem. Int. Ed. 2005, 44, 3230–3232.
[7] a) H. Wennemers, Chem. Commun. 2011, 47, 12036–12041; b)
K. Akagawa, K. Kudo, Adv. Synth. Catal. 2011, 353, 843–847;
c) S. J. Miller, Acc. Chem. Res. 2004, 37, 601–610; d) M. S. Sig-
man, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901–4902.
[22]
[23]
For desymmetrization procedures of small symmetrical mole-
ˇ
cules, see for example: V. Strukil, D. Margetic´, M. D. Igrc, M.
Eckert-Maksic´, T. Frisˇcˇic´, Chem. Commun. 2012, 48, 9705–
9707 and references cited therein.
[24]
a) R. Grantham, Science 1974, 185, 862–864; the data are avail-
pscale/PolarityGrantham.html. b) A. A. Aboderin, Int. J. Bio-
chem. 1971, 2, 537–544; the data are available online from the
mobility.html.
ˇ
ˇ
[25]
[26]
I. Zigrovic´, S. Horvat, Eur. J. Org. Chem. 2001, 1533–1539.
J. Yu, T. V. Rajan Babu, J. R. Parquette, J. Am. Chem. Soc.
2008, 130, 7845–7847.
[27]
The correlation between the CD spectra and molecular confor-
mation is known to be rather difficult, see for example: Z.
ˇ
Brkljacˇa, K. Condic´-Jurkic´, A.-S. Smith, D. M. Smith, J.
Chem. Theory Comput. 2012, 8, 1694–1705.
8160
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 8154–8161