Potent and Selective Inhibitors of Aldose Reductase
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 9 3151
741-744. (b) Suzuki, K.; Koh, Y. H.; Mizuno, H.; Hamaoka, R.;
Taniguchi, N. Overexpression of aldehyde reductase protects
PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglu-
cosone. J. Biochem. 1998, 123, 353-357.
References
tes.org.
(2) (a) The Diabetes Control and Complications Trial Research
Group. The effect of intensive treatment of diabetes on the
development and progression of long-term complications in
insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329,
977-986. (b) The United Kingdom Prospective Diabetes Study
Group. Intensive blood-glucose control with sulfonyl-ureas or
insulin compared with conventional treatment and risk of
complications in patients with type 2 diabetes (UKPDS33).
Lancet 1998, 352, 837-853.
(15) (a) Takahashi, M.; Fujii, J.; Teshima, T.; Suzuki, K.; Shiba, T.;
Taniguchi, N. Identity of a major 3-deoxyglucosone-reducing
enzyme with aldehyde reductase in rat liver established by
amino acid sequencing and cDNA expression. Gene, 1993, 127,
249-253. (b) Kanazu, T.; Shinoda, M.; Nakayama, T.; Deyashiki,
Y.; Hara, A.; Sawada, H. Aldehyde reductase is a major protein
associated with 3-deoxyglucosone reductase activity in rat, pig
and human livers. Biochem. J. 1991, 279, 903-906.
(16) Hamada, Y.; Araki, N.; Koh, N.; Nakamura, J.; Horiuchi, S.;
Hotta, N. Rapid formation of advanced glycation end-products
by intermediate metabolites of glycolytic pathway and polyol
pathway. Biochem. Biophys. Res. Commun. 1996, 228, 539-543.
(17) (a) Oya, T.; Hattori, N.; Mizuno, Y.; Miyata, S.; Maeda, S.;
Osawa, T.; Uchida, K. Methylglyoxal Modification of Protein. J.
Biol. Chem. 1999, 274, 18492-18502. (b) Cavalot, F.; Anfossi,
G.; Russo, I.; Mularoni, E.; Massucco, P.; Mattiello, L.; Burzacca,
S.; Hahn, A.; Trovati, M. Nonenzymatic Glycation of Fibronectin
Impairs Adhesive and Proliferative Properties of Human Vas-
cular Smooth Muscle Cells. Metabolism 1996, 45, 285-292. (c)
Fu, M.; Wells-Knecht, K.; Blackledge, J. Lyons, T.; Thorpe, S.;
Baynes, J. Glycation, Glycoidation, and cross-Linking of Collagen
by Glucose. Diabetes 1994, 43, 676-683.
(3) (a) Textbook of Diabetes; Pickup, J. C., Williams, G., Eds.;
Blackwell Science Ltd: United Kingdom, 1997; Vol. 1, Chapter
42. (b) Williamson, J. R.; et al. Hyperglycemic pseudohypoxia
and diabetic complications. Diabetes 1993, 42, 801-813. (c)
Setter, S. M.; Campbell, R. K.; Cahoon, C. J. Biochemical
pathways for microvascular complications of diabetes mellitus.
Ann. Pharmacother. 2003, 37, 1858-1866.
(4) Mylari, B. L.; Armento. S. J.; Beebe, D. A.; Conn, E. L.; Coutcher,
J. B.; Dina, M. S.; O’Gorman, M. T.; Linhares, M. C.; Martin,
W. H.; Oates, P. J.; Tess, D. A.; Withbroe, G. J.; Zembrowski,
W. J. A highly selective, non-hydantoin, non-carboxylic acid
inhibitor of aldose reductase with potent oral activity in diabetic
rat models: 6-(5-Chloro-3-methylbenzofuran-2-sulfonyl)-2-H-
pyridazin-3-one. J. Med. Chem. 2003, 46, 2283-2286.
(5) Greene, D. A.; Sima, A. F. A.; Stevens, M. J.; Feldman, E. L.;
Lattimer, S. A.; Complications: Neuropathy, pathogenetic con-
siderations. Diabetes Care 1992, 15, 1902-1925.
(6) Green, D. A,; Lattimer, S. A.; Sima, A. A. F. Sorbitol,
pophoinosititides, and sodium-potassium-ATPase in the patho-
genesis of diabetic complications, N. Engl. J. Med. 1987, 316,
599-606.
(7) Lee, A.; Chung, S. K.; Chung, S. S. Demonstration that polyol
accumulation is responsible for diabetic cataract by use of
transgenic mice expressing the aldose reductase gene in the lens.
Proc. Natl. Acad. Sci. 1995, 92, 2780-2784.
(18) (a) Aotsuka, T.; Abe, N.; Fukushima, K.; Ashizawa, N.; Yoshida,
M. Benzothiazol-2-yl carboxylic acids with diverse spacers:
A
novel class of potent, orally active aldose reductase inhibitors.
Bioorg. Med. Chem Lett., 1997, 7, 1677-1682. (b) Aotsuka, T.;
Hosono, H.; Kurihara, T.; Nakamura, Y.; Matsui, T.; Kobayashi,
F. Chem. Pharm. Bull. 1994, 42, 1264-1271. (c) Matsui, T.;
Nakamura, Y.; Ishikawa, H.; Matsuura, A.; Kobayashi, F. Jpn.
J. Pharmacol. 1994, 64, 115.
(19) Somei, M.; Kizu, K.; Kunimoto, M.; Yamada, F. Chem. Pharm.
Bull. 1985, 33, 3996.
(20) Urzhumtsev, A.; Teˆte-Favier, F.; Mitschler, A.; Barbanton, J.;
Barth, P.; Urzhumtseva, L.; Biellmann, J.-F.; Podjarny, A. D.;
Moras, D. A. ‘specificity’ pocket inferred from the crystal
structures of the complexes of aldose reductase with the phar-
maceutically important inhibitors tolrestat and sorbinil. Struc-
ture 1997, 5, 601-612.
(8) (a) Oates, P. J.; Mylari, B. L. Aldose reductase inhibitors:
Therapeutic implications for diabetic complications. Exp. Opin.
Invest. Drugs 1999, 8, 1-15. (b) Ramasamy, R. Aldose reduc-
tase: A novel target for cardioprotective interventions. Current
Drug Targets 2003, 4, 625-632.
(21) (a) El-Kabbani, O.; Wilson, D. K.; Petrash, J. M.; Quiocho, F. A.
Structural features of the aldose reductase and aldehyde reduc-
tase inhibitor-binding sites. Mol. Vis. 1998, 4, 19-25. (b) Rees-
Milton, K. J.; Jia, Z.; Green, N. C.; Bhatia, M.; El-Kabbani, O.;
Flynn, T. G. Aldehyde reductase: The role of C-terminal residues
in defining substrate and cofactor specificities. Arch. Biochem.
Biophys. 1998, 355, 137-144. (c) El-Kabbani, O.; Carper, D. A.;
McGowan, M. H.; Devedjiev, Y.; Rees-Milton, K. J.; Flynn, T.
G. Studies on the inhibitor-binding site of porcine aldehyde
reductase: Crystal structure of the holoenzyme-inhibitor ter-
nary complex. Proteins 1997, 29, 186-192. (d) Sotriffer, C. A.;
Kramer, O.; Klebe, G. Probing flexibility and “induced-fit”
phenomena in aldose reductase by comparative crystal structure
analysis and molecular dynamics simulations. Proteins: Struct.,
Funct. Bioinformatics 2004, 56, 52-66. (e) Harrison, D. H. T.;
Bohren, K. M.; Petsko, G. A.; Ringe, D.; Gabbay, K. H. The
alrestatin double-decker: Binding of two inhibitor molecules to
human aldose reductase reveals a new specificity determinant.
Biochemistry 1997, 36, 16134-16140.
(22) (a) El-Kabbani, O.; Ruiz, F.; Darmanin, C.; Chung, R. P. Aldose
reductase structures: Implications for mechanism and inhibi-
tion. Cell. Mol. Life Sci. 2004, 61, 750-762. (b) Petrash, J. M.
All in the family: Aldose reductase and closely related aldo-keto
reductases. Cell. Mol. Life Sci. 2004, 61, 737-749.
(23) Mylari, B.; Larson, E.; Beyer, T.; Zembrowski, W.; Aldinger, C.;
Dee, M.; Siegel, T.; Singleton, D. Novel, potent aldose reductase
inhibitors: 3,4-Dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothi-
azoyl]methyl]-1-phthalazine-acetic acid (zopolrestat) and con-
geners. J. Med. Chem. 1991, 34, 108-122.
(24) (a) Nagata, M.; Hohman, T. C.; Nishimura, C.; Drea, C. M.;
Oliver, C.; Robison, W. G., Jr. Polyol and vacuole formation in
cultured canine lens epithelial cells. Exp. Eye Res. 1989, 48,
667-677. (b) Kinoshita, J. H. Aldose reductase in the diabetic
eye. XLIII Edward Jackson Memorial Lecture. Am. J. Ophthal-
mol. 1986, 102, 685-692. (c) Cogan, D. G.; Kinoshita, J. H.;
Kador, P. F.; Robison, W. G., Jr.; Datilis, M. B.; Cobo, L. M.;
Kupfer, C. Aldose reductase and complications of diabetes. Ann.
Intern. Med. 1984, 101, 82-91.
(25) Lerner, B. C.; Varma, S.; Richards, R. Polyol pathway metabo-
lites in human cataracts. Arch. Ophthalmol. 1984, 102, 917-
920.
(26) Values for drug-treated diabetic patients in study and typical
untreated diabetic patients (not in current study) provided by
Dr. Henry Powell, M.D., D.Sc., University of California, San
Diego.
(9) (a) Kao, Y.-L.; Donahue, K.; Chan, A.; Knight, J.; Silink, M. A
novel polymorphism in the aldose reductase gene promoter
region is strongly associated with diabetic retinopathy in
adolescents with Type I diabetes. Diabetes 1999, 48, 1338-1340.
(b) Heesom, A.; Hibberd, M.; Millward, A.; Demaine, A. Poly-
morphism in the 5′-end of the aldose reductase gene is strongly
associated with the development of diabetic nephropathy in type
I diabetes. Diabetes 1997, 46, 287-291. (c) Moczulski, D.; et al.
The role of aldose reductase gene in the susceptibility to diabetic
nephropathy in type II (non-insulin-dependent) diabetes melli-
tus. Diabetologia 1999, 42, 94-97. (d) Demaine, A.; Cross, D.;
Millward, A. Polymorphism of the aldose reductase gene and
susceptibility to retinopathy in type 1 diabetes mellitus. Invest.
Ophthalmol. Visual Sci. 2000, 41, 4064-4068. (e) Heesom, A.
E.; Millward, A.; Demaine, A. G. Susceptibility to diabetic
neuropathy in patients with insulin dependent diabetes mellitus
is associated with a polymorphism at the 5′-end of the aldose
reductase gene. J. Neurol., Neurosurg. Psychiat. 1998, 64, 213-
216. (f) Taverna, M. J. Genetics of diabetic complications:
Retinopathy. Ann. Endocrinol. 2004, 65 (Suppl. 1), 1S17-1S25.
(10) Ho, E. C. M.; Lam, K. S. L.; Chung, S. S. M. Aldose reductase
deficient mice are alleviated from depletion of GSH in the
peripheral nerve and MNCV deficit associated with diabetes.
Diabetes 2001, 50, 59.
(11) (a) Lajer, M.; Tarnow, L.; Fleckner, J.; Hansen, B. V.; Edwards,
D. G.; Parving, H.; Boel, E. Association of aldose reductase
gene Z+2 polymorphism with reduced susceptibility to diabetic
nephropathy in caucasian type 1 diabetic patients. Diabetic
medicine 2004, 21, 867-873. (b) Sivenius, K.; Pihlajamaki, J.;
Partanen, J.; Niskanen, L.; Laakso, M.; Uusitupa, M. Aldose
reductase gene polymorphisms and peripheral nerve function
in patients with type 2 diabetes. Diabetes Care 2004, 27, 2021-
2026.
(12) (a) Miyamoto, S. Recent advances in aldose reductase inhibi-
tors: Potential agents for the treatment of diabetic complica-
tions. Exp. Opin. Ther. Patents 2002, 12, 621-631. (b) Suzen,
A.; Buyukbingol, E. Recent studies of aldose reductase enzyme
inhibition for diabetic complications. Curr. Med. Chem. 2003,
10, 1329-1352.
(13) Hamada, Y.; Nakamura, J. Clinical potential of aldose reductase
inhibitors in diabetic neuropathy. Treatments Endocrinol. 2004,
3, 245-255.
(14) (a) Shinoda, M.; Mori, S.; Shintani, S.; Ishikura, S.; Hara, A.
Inhibition of Human Aldehyde Reductase by Drugs for Testing
the Function of Liver and Kidney. Biol. Pharm. Bull. 1999, 22,