Organic Letters
Letter
(8) (a) Pozsgay, V. J. Org. Chem. 1999, 64, 7277−7280. (b) Pozsgay, V.
J. Carbohydr. Chem. 2001, 20, 659−665. (c) Emmadi, M.; Kulkarni, S. S.
J. Org. Chem. 2011, 76, 4703−4709. (d) Emmadi, M.; Kulkarni, S. S. Org.
Biomol. Chem. 2013, 11, 4825−4830.
Scheme 5. Glycosylations Using 17 and 20 as Acceptors
̀
(9) Pedretti, V.; Veyrieres, A.; Sinay, P. Tetrahedron 1990, 46, 77−88.
̈
(10) A price comparison in February 2016 showed galactosamine
hydrochloride to be 27−49 times more expensive.
(11) (a) Lattrell, R.; Lohaus, G. Justus Liebigs Ann. Chem. 1974, 1974,
901−920. (b) Albert, R.; Dax, K.; Link, R. W.; Stutz, A. E. Carbohydr.
̈
Res. 1983, 118, C5−C6.
(12) Hederos, M.; Konradsson, P. J. Carbohydr. Chem. 2005, 24, 297−
320.
(13) Gross, P. H.; Du Bois, F.; Jeanloz, R. W. Carbohydr. Res. 1967, 4,
244−248.
(14) (a) Nashed, M. A.; El-Sokkary, R. I.; Rateb, L. Carbohydr. Res.
1984, 131, 47−52. (b) McGeary, R. P.; Wright, K.; Toth, I. J. Org. Chem.
2001, 66, 5102−5105.
(15) Hale, K. J.; Hough, L.; Manaviazar, S.; Calabrese, A. Org. Lett.
2014, 16, 4838−4841. Hale, K. J.; Hough, L.; Manaviazar, S.; Calabrese,
A. Org. Lett. 2015, 17, 1738−1741.
to purify the products by crystallizations at several stages, and
hence, the procedure is scalable. Furthermore, access to the
corresponding D-galactosamine derivatives was achieved via an
intramolecular migration/inversion using a benzoyl ester as the
migrating group, ensuring orthogonality and sufficient stability
for complex oligosaccharide synthesis. Both are key building
blocks in oligosaccharide synthesis, and we have shown how they
can be used directly as acceptors in glycosylations with α-
selectivity.
(16) (a) Lay, L.; Nicotra, F.; Panza, L.; Russo, G. Helv. Chim. Acta
1994, 77, 509−514. (b) Belot, F.; Jacquinet, J.-C. Carbohydr. Res. 1996,
290, 79−86. (c) Rochepeau-Jobron, L.; Jacquinet, J.-C. Carbohydr. Res.
1997, 305, 181−191. (d) Cai, Y.; Ling, C.-C.; Bundle, D. R. J. Org. Chem.
2009, 74, 580−589. (e) Feng, J.; Ling, C.-C. Carbohydr. Res. 2010, 345,
2450−2457. (f) Rasmussen, M. R.; Marqvorsen, M. H. S.; Kristensen, S.
K.; Jensen, H. H. J. Org. Chem. 2014, 79, 11011−11019.
(17) (a) Takeda, Y.; Horito, S. Carbohydr. Res. 2005, 340, 211−220.
(b) Behera, A.; Emmadi, M.; Kulkarni, S. S. RSC Adv. 2014, 4, 58573−
58580.
ASSOCIATED CONTENT
* Supporting Information
■
S
(18) (a) Binkley, R. W.; Sivik, M. R. J. Org. Chem. 1986, 51, 2619−
2621. (b) Binkley, R. W.; Abdulaziz, M. A. J. Org. Chem. 1987, 52, 4713−
4717. (c) Binkley, R. W. J. Org. Chem. 1991, 56, 3892−3896.
(19) Yan, R.-B.; Yang, F.; Wu, Y.; Zhang, L.-H.; Ye, X.-S. Tetrahedron
Lett. 2005, 46, 8993−8995.
(20) Gammon, D. W.; Steenkamp, D. J.; Mavumengwana, V.;
Marakalala, M. J.; Mudzunga, T. T.; Hunter, R.; Munyololo, M. Bioorg.
Med. Chem. 2010, 18, 2501−2514.
(21) Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan, M.-D. Org.
Lett. 2005, 7, 3343−3346.
The Supporting Information is available free of charge on the
Crystal structure of the α-anomer of 2 (CCDC no.
Experimental procedures, characterization data, crystallo-
graphic information, and NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(22) Szabo,
Asymmetry 2005, 16, 83−95.
́ ́ ́
Z. B.; Borbas, A.; Bajza, I.; Liptak, A. Tetrahedron:
Notes
(23) Andersen, S. M.; Heuckendorff, M.; Jensen, H. H. Org. Lett. 2015,
17, 944−947.
(24) Volbeda, A. G.; Kistemaker, H. A. V.; Overkleeft, H. S.; van der
The authors declare no competing financial interest.
Marel, G. A.; Filippov, D. V.; Codee
8796−8806.
́
, J. D. C. J. Org. Chem. 2015, 80,
ACKNOWLEDGMENTS
We thank CHEM, UCPH, for funding and Rikke Munch Gelardi,
CHEM, UCPH, for solving the X-ray crystallographic data.
(25) El Nemr, A.; Tsuchiya, T. Carbohydr. Res. 2001, 330, 205−214.
(26) Pedersen, C. M.; Olsen, J.; Brka, A. B.; Bols, M. Chem. - Eur. J.
2011, 17, 7080−7086.
■
(27) Gisch, N.; Kohler, T.; Ulmer, A. J.; Muthing, J.; Pribyl, T.; Fischer,
̈
K.; Lindner, B.; Hammerschmidt, S.; Zahringer, U. J. Biol. Chem. 2013,
288, 15654−15667.
̈
REFERENCES
■
(1) Dube, D. H.; Champasa, K.; Wang, B. Chem. Commun. 2011, 47,
87−101.
(28) Kalikanda, J.; Li, Z. J. Org. Chem. 2011, 76, 5207−5218.
(29) Dere, R. T.; Kumar, A.; Kumar, V.; Zhu, X.; Schmidt, R. R. J. Org.
Chem. 2011, 76, 7539−7545.
(2) (a) Adibekian, A.; Stallforth, P.; Hecht, M.-L.; Werz, D. B.;
Gagneux, P.; Seeberger, P. H. Chem. Sci. 2011, 2, 337−344. (b) Werz, D.
B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.;
Seeberger, P. H. ACS Chem. Biol. 2007, 2, 685−691.
(3) Moran, A. P.; Holst, O.; Brennan, P. J.; von Itzstein, M. Part I:
Microbial Glycolipids, Glycoproteins and Glycopolymers. In Microbial
Glycobiology: Structures, Relevance and Applications; Academic Press:
London, 2009; pp 3−231.
(30) van der Es, D.; Groenia, N. A.; Laverde, D.; Overkleeft, H. S.;
Huebner, J.; van der Marel, G.; Codee
24, 3893−3907.
́
, J. D. C. Bioorg. Med. Chem. 2016,
(4) Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244−1251.
(5) Mirabella, S.; Cardona, F.; Goti, A. Org. Biomol. Chem. 2016, 14,
5186−5204.
(6) Enugala, R.; Carvalho, L. C. R.; Dias Pires, M. J.; Marques, M. M. B.
Chem. - Asian J. 2012, 7, 2482−2501.
́
(7) Codee, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft, H.
S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769−782.
D
Org. Lett. XXXX, XXX, XXX−XXX