Communication
ChemComm
162–165; (b) H. Braunschweig, K. Radacki, D. Rais, A. Schneider and
F. Seeler, J. Am. Chem. Soc., 2007, 129, 10350–10351; (c) H. Braunschweig,
T. Kupfer, K. Radacki, A. Schneider, F. Seeler, K. Uttinger and H. Wu,
J. Am. Chem. Soc., 2008, 130, 7974–7983; (d) H. Braunschweig, F. Matz,
K. Radacki and A. Schneider, Organometallics, 2010, 29, 3457–3462;
(e) J. Brand, H. Braunschweig, R. D. Dewhurst, F. Hupp and K. Lang,
Eur. J. Inorg. Chem., 2015, 2592–2595.
6 Transition metal oxoboryl complexes: (a) H. Braunschweig, K. Radacki
and A. Schneider, Science, 2010, 328, 345–347; (b) S. Bertsch, J. Brand,
H. Braunschweig, F. Hupp and K. Radacki, Chem. – Eur. J., 2015, 16,
6278–6285.
7 Transition metal alkylideneboryl complexes: J. Brand, H. Braunschweig,
F. Hupp, A. K. Phukan, K. Radacki and S. S. Sen, Angew. Chem., Int. Ed.,
2014, 53, 2240–2244.
8 (a) T. B. Marder and N. C. Norman, Top. Catal., 1998, 5, 63–73;
(b) Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials, ed. D. G. Hall, Wiley-VCH, Weinheim,
Germany, 2006; (c) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder,
J. M. Murphy and J. F. Hartwig, Chem. Rev., 2010, 110, 890–931;
(d) J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864–873.
9 H. Braunschweig, R. Bertermann, P. Brenner, M. Burzler, R. D. Dewhurst,
K. Radacki and F. Seeler, Chem. – Eur. J., 2011, 17, 11828–11837.
10 T. Yoshida, R. M. Williams and E. Negishi, J. Am. Chem. Soc., 1974,
96, 3688–3690.
11 H. Braunschweig, Q. Ye and K. Radacki, Chem. Commun., 2012, 48,
2701–2703.
12 H. Braunschweig, Q. Ye, A. Vargas, R. D. Dewhurst and F. Hupp,
J. Am. Chem. Soc., 2014, 136, 9560–9563.
13 (a) R. S. Simons, K. J. Galat, J. D. Bradshaw, W. J. Youngs,
A small amount of reductive elimination from one (boryl)(silyl)
complex was also inferred from the detection of simple mono-
valent iron carbonyl–phosphine complexes. The bulky duryl
group appears to be integral to this chemistry, by providing
steric shielding of the boron atom while simultaneously denying
it the p electron density needed to quench its electron deficiency,
thus allowing unusual reactions with small groups. Given the
subtle differences between methyl and ethyl groups, the distinct
reactivity difference observed is surprising. While the proposal of
a mechanism would be premature, the results appear to rule out a
radical mechanism, which would presumably favour a methyl
shift over an ethyl shift in accordance with the noted differences
in the relative willingness of methyl and ethyl groups to undergo
radical processes.18
Notes and references
1 J. E. Huheey, E. A. Keiter and R. L. Keiter, Anorganische Chemie–
¨
Prinzipien von Struktur und Reaktivitat, Walter de Gruyter, Berlin,
New York, 2nd edn, 1995.
2 T. H. Chan and D. Massuda, J. Am. Chem. Soc., 1977, 99, 936–937.
3 M. Alajarin, C. Lopez-Leonardo and J. Berna, Sci. Synth., 2007, 31,
1539–1554.
4 Iminoboranes: (a) P. Paetzold, A. Richter, T. Thijssen and
S. Wu¨rtenberg, Chem. Ber., 1979, 112, 3811–3827; (b) P. Paetzold
and C. von Plotho, Chem. Ber., 1982, 115, 2819–2825; (c) P. Paetzold,
Adv. Inorg. Chem., 1987, 31, 123–170; (d) P. Paetzold, Pure Appl.
Chem., 1991, 63, 345–350; (e) P. Paetzold, Phosphorus, Sulfur, Silicon,
´
C. A. Tessier, G. Aullon and S. Alvarez, J. Organomet. Chem., 2001,
628, 241–254; (b) H. Braunschweig, M. Colling, C. Hu and K. Radacki,
Angew. Chem., Int. Ed., 2002, 41, 1359–1361; (c) K. K. Pandey,
H. Braunschweig and R. D. Dewhurst, Eur. J. Inorg. Chem., 2011,
2045–2056; (d) H. Braunschweig, Q. Ye, A. Vargas, R. D. Dewhurst,
K. Radacki and A. Damme, Nat. Chem., 2012, 4, 563–567.
¨
1994, 93–94, 39–50; ( f ) J. Mu¨nster, P. Paetzold, E. Schroder,
H. Schwan and T. von Bennigsen-Mackiewicz, Z. Anorg. Allg. Chem.,
¨
2004, 630, 2641; (g) H. Noth, Angew. Chem., Int. Ed. Engl., 1988, 27,
14 H. Braunschweig, R. D. Dewhurst, F. Hupp, C. Kaufmann,
A. K. Phukan, C. Schneider and Q. Ye, Chem. Sci., 2014, 5, 4099–4104.
15 (a) R. Waterman, P. G. Hayes and T. D. Tilley, Acc. Chem. Res., 2007,
40, 712–719; (b) B. Blom, M. Stoelzel and M. Driess, Chem. – Eur. J.,
2013, 19, 40–62; (c) B. Blom, D. Gallego and M. Driess, Inorg. Chem.
¨
¨
1603–1623; (h) U. Braun, B. Bock, H. Noth, I. Schwab, M. Schwartz,
S. Weber and U. Wietelmann, Eur. J. Inorg. Chem., 2004, 3612–3628;
¨
¨
(i) D. Mannig, H. Noth, I. Schwab, M. Schwartz, S. Weber and
U. Wietelmann, Angew. Chem., Int. Ed., 1985, 24, 998–999;
( j) E. Bulak, G. E. Herberich, I. Manners, H. Mayer and P. Paetzold,
Angew. Chem., Int. Ed., 1988, 27, 958–959; (k) E. Bulak and P. Paetzold,
Z. Anorg. Allg. Chem., 2000, 626, 1277–1278; (l) K. Delpy, D. Schmitz
and P. Paetzold, Chem. Ber., 1983, 116, 2994–2999; (m) P. Paetzold,
K. Delpy, R. P. Hughes and W. A. Herrmann, Chem. Ber., 1985, 118,
1724–1725; (n) P. Paetzold, K. Delpy and R. Boese, Z. Naturforsch., B:
´
´
Front., 2014, 1, 134–148; (d) L. Alvarez-Rodrıguez, J. A. Cabeza,
´
P. Garcia-Alvarez and D. Polo, Coord. Chem. Rev., 2015, 300, 1–28.
16 S. Sakaki, S. Kai and M. Sugimoto, Organometallics, 1999, 18, 4825–4837.
17 (a) G. Schmid and E. Welz, Z. Naturforsch., 1979, 34b, 929–933;
´
(b) F. H. Carre and J. J. E. Moreau, Inorg. Chem., 1982, 21, 3099–3105.
18 (a) L. M. Tolbert, J. Bedlek, M. Terapane and J. Kowalik, J. Am. Chem.
Soc., 1997, 119, 2291–2292; (b) R. Bertermann, H. Braunschweig,
¨
J. Chem. Sci., 1988, 43, 839–845; (o) B. Krockert, K.-H. van Bonn and
P. Paetzold, Z. Anorg. Allg. Chem., 2005, 631, 866–868.
5 Transition metal iminoboryl complexes: (a) H. Braunschweig,
K. Radacki, D. Rais and K. Uttinger, Angew. Chem., Int. Ed., 2006, 45,
¨
R. D. Dewhurst, C. Horl, T. Kramer and I. Krummenacher, Angew.
Chem., Int. Ed., 2014, 53, 5453–5457.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015