PHASCI 2993
30 April 2014
No. of Pages 9, Model 5G
S. Garg, N. Raghav / European Journal of Pharmaceutical Sciences xxx (2014) xxx–xxx
9
463
464
465
466
467
468
469
470
471
Q7 472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
Kamboj, R.C., Pal, S., Raghav, N., Singh, H., 1992. Studies on brain hydrolytic enzymes
and their endogenous protein substrates. J. Indian Chem. Soc. 69, 270–274.
Kerrow, J.H.M., James, M.N.G. (Eds.), 1996. Cysteine proteases: evolution, function
and inhibitor design. Perspect. Drug Discovery Des. 6, 1–125.
Kim, S.H., Lee, E., Baek, K.H., Kwon, H.B., Woo, H., Lee, E.S., Kwon, Y., Na, Y., 2013.
Chalcones, inhibitors for topoisomerase I and cathepsin B and L, as potential
anti-cancer agents. Bioorg. Med. Chem. Lett. 23, 3320–3324.
Lee, J.I., Jung, M.G., 2005. Bull. Korean Chem. Soc. 12 (26), 2044–2046.
Lee, J.I., Son, H.S., Jung, M.G., 2005. Bull. Korean Chem. Soc. 26, 161.
tpde;Lee, E.J., Seong, M.G., Won, C.S., Wun, K.J., Sung, M.K., 2008. Naringin-induced
p21WAF1mediated G-phase cell cycle arrest via activation of the Ras/Raf/ERK
signaling pathway in vascular smooth muscle cells. Food Chem. Toxicol. 46, 3800.
Lim, I.T., Meroueh, S.O., Lee, M., Heeg, M.J., Mobashery, S., 2004. Strategy in
inhibition of cathepsin B, A target in tumor invasion and metastasis. J. Am.
Chem. Soc. 126, 10271–10277.
401
4. Conclusion
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
Cysteine proteases have been reported as valuable targets for
the development of various antiparasitic agents. A direct co-rela-
tion between various diseased conditions such as inflammation
and cancer with enhanced level of cathepsins B & H encouraged
us to look for various inhibitors of these enzymes. Although a large
number of peptidyl inhibitors to these thiol enzymes are well
reported in literature, but due to some stability and immunogenic
problem related with peptidyl inhibitors; in the recent past, non-
peptidyl inhibitors of these enzymes are being searched. The pres-
ent study adds to the existing knowledge of non-peptidyl inhibi-
tors of cathepsins B & H, where we have been reported that 20-
hydroxychalcones, flavanone and flavones act as inhibitors of these
cysteine proteases. The compounds 1g, 2g and 3g inhibited cathep-
Makrandi, J.K., Bala, S., 2000. Syn. Comm. 30, 3555.
Menezes, M.J., Manjrekar, S., Pai, V., Patre, R.E., Tilve, S.G., 2009. A facile microwave
assisted synthesis of flavones. Indian J. Chem. 48B, 1311–1314.
Mort, J.S., Buttle, D.J., 1997. Cathepsin B. Int. J. Biochem. Cell Biol. 29, 715–720.
Pan, X., Tan, N., Zeng, G., Zhanga, Y., Jia, R., 2005. Amentoflavone and its derivatives
as novel natural inhibitors of human cathepsin B. Bioorg. Med. Chem. 13, 5819–
5825.
Pan, Y., Chen, Y., Yu, X., Wang, J., Zhang, L., He, Y., Zheng, Y., Zheng, J., 2012. The
synthesis of a novel chalcone and evaluation for anti-free radical activity and
antagonizing the learning impairments in Alzheimer’s model. Physiol. Biochem.
29, 949–958.
Raghav, N., Singh, M., 2013. In-vitro inhibition studies on endogenous proteolysis of
liver homogenate in presence of synthesized pyrazolines. Int. J. Pharm.
Pharmaceut. Sci. 5, 8086.
Raghav, N., Singh, M., 2014a. Design, synthesis and docking studies of bischalcones
based quinazoline-2(1H)-ones and quinazoline-2(1H)-thiones derivatives as
novel inhibitors of cathepsin B and cathepsin H. Eur. J. Pharm. Sci. 54, 28–39.
Raghav, N., Singh, M., 2014b. Acyl hydrazides and triazoles as novel inhibitors of
Raghav, N., Kamboj, R.C., Parnami, S., Singh, H., 1995. Physico-chemical properties of
brain cathepsin H. Indian J. Biochem. Biophys. 32, 279–285.
Raghav, N., Kaur, R., Singh, M., Suman, Priyanka, 2010a. Effect of semicarbazones on
endogenous protein hydrolysis in liver homogenate. Asian J. Chem. 22, 7097–
7101.
Raghav, N., Kaur, R., Singh, M., Suman, Priyanka, 2010b. Proteolytic studies in liver
homogenate in presence of phenylhydrazone. Int. J. Pharm. Tech. 2, 743–749.
Raghav, N., Kaur, R., Singh, M., Suman, Priyanka, 2011. Proteolytic studies in liver
homogenate in presence of arylhydrazone. Asian J. Chem. 23, 1409–1410.
Raghav, N., Kaur, R., Singh, M., Suman, Priyanka, 2012. Proteolytic studies in liver
homogenate in presence of substituted thiosemicarbazones. Int. J. Chem. Sci. 10,
1698–1704.
Ramos, S., 2007. Effects of dietary flavanoids on apoptotic pathways related to
cancer chemoprevention. J. Nutr. Biochem. 18, 427–442.
Sahu, N.K., Balbhadra, S.S., Choudhary, J., Kohli, D.V., 2012. Exploring
pharmacological significance of chalcone scaffold: a review. Curr. Med. Chem.
19, 209.
Sangwan, N.K., Verma, B.S., Dhindsa, K.S., 1984. Chem. Ind., 271.
Schwartz, W.N., Barrett, A.J., 1980. Human cathepsin H. Biochem. J. 191, 487–497.
Shi, L., Feng, X.E., Cui, J.R., Fang, L.H., Du, G.H., Li, Q.S., 2010. Synthesis and biological
activity of flavanone derivatives. Bioorg. Med. Chem. 20 (18), 5466–5468.
Shin, H.J., Shon, D.H., Youn, H.S., 2013. Isobavachalcone suppresses expression of
inducible nitric oxide synthase induced by Toll-like receptor agonists. Int.
Immunopharmacol. 15, 38.
Silberberg, M., Izquierdo, G.A., Combaret, L., Remesy, C., Scalbert, A., Morand, C.,
2006. Biomed. Pharmacother. 60, 529.
Stoschek, C.M., 1990. Quantitation of protein. Methods Enzymol. 18, 250–268.
Tran, T.D., Park, H., Kim, H.P., Ecker, G.F., Thai, K.M., 2009. Inhibitory activity of
prostaglandin E2 production by the synthetic 20-hydroxychalcone analogues:
synthesis and SAR study. Bioorg. Med. Chem. Lett. 19, 1650.
Tran, T.D., Do, T.H., Tran, N.C., Ngo, T.D., Huynh, T.N., Tran, C.D., Thai, K.M., 2012a.
Synthesis and anti methicillin resistant Staphylococcus aureus activity of
substituted chalcones alone and in combination with non-beta-lactam
antibiotics. Bioorg. Med. Chem. Lett. 22, 4555.
Tran, T.D., Nguyen, T.T., Do, T.H., Huynh, T.N., Tran, C.D., Thai, K.M., 2012b. Synthesis
and antibacterial activity of some heterocyclic chalcone analogues alone and in
combination with antibiotics. Molecules 17, 6684.
sin
B
activity maximally with Ki values of ꢀ6.18 ꢁ 10ꢂ8 M,
4.8 ꢁ 10ꢂ7 M and 7.85 ꢁ 10ꢂ7 M, respectively. The compounds
were also identified as most potent inhibitors to cathepsin H with
the Ki values of ꢀ2.8 ꢁ 10ꢂ7 M, 31.8 ꢁ 10ꢂ6 M and 33.7 ꢁ 10ꢂ6
M
respectively. All the compounds were evaluated as competitive
inhibitors of enzymes and the results are well documented with
in-silico experiments.
422
5. Uncited references
423
Stoschek (1990), Lee et al. (2005, 2008), Lee and Jung (2005),
Makrandi and Bala (2000), Menezes et al. (2009), Sangwan et al.
(1984), Sahu et al. (2012), Pan et al. (2012) and Wyns et al. (2012).
424
425 Q6
426
Acknowledgements
427
428
429
430
One of the authors, Shweta Garg is thankful to UGC New Delhi,
India for award of JRF and also to Kurukshetra University, Kuruksh-
etra for providing necessary research laboratory facilities.
The authors have declared no conflict of interest.
431
Appendix A. Supplementary material
432
433
Supplementary data associated with this article can be found, in
434
References
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
Bradford, M.M., 1976.
A rapid and sensitive method for the quantitation of
microgram quantities of proteins utilizing the principle of protein-dye binding.
Anal. Biochem. 72, 248–254.
Caracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M.H.S., Lopes, J.G.S.,
Juliano, L., Santos, P.S., Comasseto, J.V., Cunha, R.L.O.R., Tiekink, E.R.T., 2012. A
tellurium-based cathepsin
B inhibitor: molecular structure, modelling,
molecular docking and biological evaluation. J. Mol. Struct. 1013, 11–18.
Frlan, R., Gobec, S., 2006. Inhibitors of cathepsin B. Curr. Med. Chem. 13, 23092327.
Gocheva, V., Joyce, J.A., 2007. Cysteine cathepsins and the cutting edge of cancer
invasion. Cell Cycle 6, 60–64.
Guncar, G., Podobnik, M., Pungercar, J., Strukelj, B., Turk, V., Turk, D., 1998. Crystal
structure of porcine cathepsin H determined at 2.1 Å resolution: location of the
mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase
function. Structure 6, 51–61.
Halsteen, B., 1983. Flavanoids, a class of natural products of high pharmacological
potency. Biochem. Pharmacol. 32, 1141.
Huber, C.P., Campbell, R.L., Hasnain, S., Hirama, T., To, R., 2013. Crystal Structure of
Jedeszko, C., Sloane, B.F., 2004. Cysteine cathepsins in human cancer. Biol. Chem.
385, 10171027.
Jedinak, A., Maliar, T., 2005. Inhibitors of proteases as anticancer drugs. Neoplasma
52, 185192.
Kachadourian, R., Day, B.J., Pugazhenti, S., Franklin, C.C., Genoux, B.E., Mahaffey, G.,
Gauthier, C., Pietro, A.D., Boumendjel, A., 2012. A synthetic chalcone as a potent
inducer of glutathione biosynthesis. J. Med. Chem. 55, 1382.
Kamboj, R.C., Pal, S., Singh, H., 1990. Purification and characterization of cathepsin B
from goat brain. J. Biosci. 15, 397–408.
Turk, V., Kos, J., Turk, B., 2004. Cysteine cathepsins (proteases) – on the main stage
of cancer? Cancer Cell 5, 409–410.
Wyns, C., Steendam, K.V., Vanhoecke, B., Deforce, D., Bracke, M., Heyerick, A., 2012.
Prenylated chalcone xanthohumol associates with histones in breast cancer
cells – a novel target identified by a monoclonal antibody. Mol. Nutr. Food Res.
56, 1688.
Yung, C.H., Hsien, W.K., Pei, N.C., Horng, R.C., His, T.L., Wei, E.Y., Yih, S.H., Shu, C.C.,
2007. Flavanone and 20-OH flavanone inhibit metastasis of lung cancer cells via
downregulation of proteinases activities and MAPK pathway. Chem. Biol.
Interact. 167, 193.
Zhang, Y., Srinivasan, B., Xing, C., Lu, J., 2012. A new chalcone derivative (E)-3-
(4methoxyphenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one
suppresses prostate cancer involving p53-mediated cell cycle arrests and
apoptosis. Anticancer Res. 32, 3689.
549
Q1
Please cite this article in press as: Garg, S., Raghav, N. SAR studies of o-hydroxychalcones and their cyclized analogs and study them as novel inhibitors of