(SiCH3), 52.88 (OCH3), 127.71 (C3 , C5 of Ph), 128.64 (C4),
135.6 (C2 , C6), 141.5 (C1); MS m/z: 374 (M+), 359
(M+ ꢀ CH3), 343, 207, 151, 89, 31.
Experimental
Typical experimental procedure for the electrolyses was as fol-
lows. A solution of 0.1 mmol of Me3SiCl and 2.5 ꢃ 10ꢀ3 mol
Bu4NPF6 in 25 ml of dry DMF was electrolyzed for 1.5 h to
reduce H+ formed in the hydrolysis of the chlorosilane by resi-
dual water. Diorganyl dialkoxysilane (5 mmol) was then added
(and, when necessary, 2 mmol of silanone trap) and the elec-
1
D4DPhMeO (7). NMR H: 0.08 (12H, s), 0.11 (12H, s), 3.50
(3H, s), 7.14–7.71 (5H, m); NMR 13C (CDCl3): 0.80 (SiCH3),
1.72 (SiCH3), 52.80 (OCH3), 127.1 (C3 , C5), 128.5 (C4),
134.2 (C2 , C6), 141.1 (C1); MS m/z: 433 (M+ ꢀ CH3), 371
(M+ ꢀ C6H5), 207, 181, 137, 73.
trolysis was carried out at a constant O2 flow rate (5 ml minꢀ1
)
in the galvanostatic mode with a current density j ¼ 5–7 mA
cmꢀ2. Graphite cathode and glassy carbon felt anode were
used. After passing about 2 F of electricity, Bu4NPF6 was
precipitated with hexanes, the solution concentrated and
separated on a column with SiO2 .
D3DPhVin (8). NMR 1H: (CDCl3) 0.14 (6H, s), 0.18 (12H, s),
5.82–6.32 (3H, m), 7.36–7.67 (5H, m); MS m/z: 370 (M+), 355
(M+ ꢀ CH3), 251, 207, 73.
Characterization of products
References
MS and NMR spectra were recorded using a Shimadzu QP-
5000 quadrupole spectrometer, ionization voltage 70 kV, and
a Bruker 200 MHz spectrometer (CDCl3 , TMS), respectively.
1
L. E. Gusel’nikov, N. S. Nametkin and V. M. Vdovin, Acc. Chem.
Res., 1975, 8, 18.
2
3
4
M. G. Voronkov, J. Organomet. Chem., 1998, 557, 143.
H. J. Schnockel, J. Mol. Struct., 1980, 65, 115.
J. M. T. Davidson, A. Fenton, G. Manuel and G. Bertrand, Orga-
nometallics, 1985, 4, 1324.
(Ph2SiO)3 (1). NMR 1H: 7.20–7.24 (6H, m), 7.42–7.46 (12H,
m), 7.96–7.98 (12H, m); NMR 13C (CDCl3): 125.91 (C3 , C5),
128.99 (C4), 137.11 (C2 , C6), 144.21 (C1); MS m/z: 594
(M+), 439, 219, 197, 144, 131, 77.
5
E. A. Chernyshev, T. L. Krasnova, N. A. Mudrova, A. V.
Golovkin and M. G. Kuznetsova, Zh. Obshch. Khim., 1987, 57,
1725.
(Ph2SiO)4 (2). NMR 1H: 7.19–7.24 (8H, m), 7.39–7.43 (16H,
m), 7.90–7.92 (16H, m); NMR 13C (CDCl3): 125.21 (C3 , C5),
129.21 (C4), 138.01 (C2 , C6), 145.41 (C1).
6
7
T. J. Barton and B. L. Groh, J. Am. Chem. Soc., 1985, 107, 7221.
L. E. Gusel’nikov, Z. A. Kerzina, Y. P. Polyakov and N. S.
Nametkin, Zh. Obsch. Khim., 1982, 52, 467.
H. S. D. Soysa, H. Okinoshima and W. P. Weber, J. Organomet.
Chem., 1977, 133, C17.
8
9
1
MDPh M (3). NMR H (CDCl3): 0.104 (18H, s), 7.30–7.66
W. F. Goure and T. J. Barton, J. Organomet. Chem., 1980,
199, 33.
2
(10H, m); NMR 13C (CDCl3) 2.47 (SiCH3), 126.5 (C3),
130(C4), 135.4 (C2), 142.2 (C1); MS m/z: 360 (M+), 345
(M+ ꢀ CH3), 330, 267, 197, 73.
10 M. G. Voronkov and S. V. Basenko, J. Organomet. Chem., 1995,
500, 325.
11 M. G. Voronkov, I. P. Tsyrendorzhieva, N. P. Ivanova and E. I.
Dubinskaya, Zh. Obshch. Khim., 1998, 68, 699.
12 D. S. Fattakhova, V. V. Jouikov and M. G. Voronkov, J. Orga-
nomet. Chem., 2000, 613, 170.
13 Here and thereafter in this paper, we used General Electric
Siloxane Nomenclature which depicts a Me2SiO unit as D and
reserves the symbol DX for structural units analogous to Me2SiO
but carrying substituents other than Me. Thus, cyclic products
derived from Dn and incorporating one or two Ph groups are
1
D3DPh (4). NMR H (CDCl3): 0.09 (12H, s), 0.11 (6H, s),
2
7.36–7.69 (10H, m); NMR 13C (CDCl3): 0.80 (SiCH3), 1.32
(SiCH3), 126.4 (C3 and C5 of Ph), 129.4 (C4 of Ph), 135.4
(C2 and C6 of Ph), 143.6 (C1 Ph); MS/EI m/z: 420 (M+),
405 (M+ ꢀ CH3), 207, 197, 135, 73.
1
D4DPh (5). NMR H (CDCl3): 0.086 (12H, s), 0.136 (12H,
2
depicted as DnDPh or DnDPh , respectively.
2
s), 7.30–7.66 (10H, m); NMR 13C (CDCl3): 0.80 (SiCH3),
1.32 (SiCH3), 126.4 (C3 , C5), 129.3 (C4), 134.6 (C2 , C6),
143.1 (C1); MS m/z: 479 (M+ ꢀ CH3), 417 (M+ ꢀ C6H5),
340, 207, 197, 137, 73.
14 P. V. Wright and J. A. Semlyen, Polymer, 1970, 11, 462.
15 V. Jouikov and R. Keyrouz, Silicon Chem., in the press.
16 The most resistive part of the electrolytic setup is the compart-
ment separating diaphragm so the Joule’s heat (W ¼ I2 ꢃ R) is
mostly produced there. Usually, with no special cooling, the bulk
electrolyte temperature was about 45 ꢁC.
1
D3DPhMeO (6). NMR H: 0.08 (12H, s), 0.12 (6H, s), 3.55
17 V. V. Jouikov and L. A. Grigorieva, Electrochim. Acta, 1996, 15,
2489.
(3H, s), 7.14–7.78 (5H, m); NMR 13C: 0.80 (SiCH3), 1.81
904
New J. Chem., 2003, 27, 902–904