Dendrimer monolayers by STM
FULL PAPER
2H; H4B), 5.00 (s, 4H; HOCH B), 3.94 (t, 3J = 6.6 Hz, 8H; HOCH CH ), 1.77
2
2
2
Acknowledgements
(tt, 3J
=
2
7.1, 6.7 Hz, 8H; HOCH CH ), 1.44 (tt, 3J
2
= 7.3 Hz, 8H;
), 0.88 ppm (t, 3J = 7.0 Hz, 12H;
2
2
(CH2)4
HOCH CH CH ), 1.25–1.37 (m, 32H; H
2
We thank the Swiss National Science Foundation for financial support
through the NRP47 program ’Supramolecular Functional Materials’ as
well as the Universities of Basel and Munich. B. A. H. acknowledges
fruitful discussions with Roland Netz.
HCH ); 13C NMR (125 MHz, CDCl3, 258C): d = 192.01, 160.72, 160.50,
3
138.51, 138.48, 108.84, 108.42, 105.86, 101.05, 70.54, 68.25, 31.97, 29.51,
29.39, 29.39, 26.20, 22.81, 14.26 ppm; IR (neat): n˜
= 2924 s, 2854 m,
1705 m, 1597 s, 1458 m, 1165 s, 1057 m, 833 cmÀ1 w; MS (MALDI-TOF):
m/z: 869.7 [M+K]+, 853.7 [M+Na]+; elemental analysis calcd (%) for
C53H82O7: C 76.58, H 9.94, N 0.0; found: C 76.23, H 9.86, N 0.0.
X-ray crystal structure analysis of C53H82O7 3: Determination of the cell
parameters and collection of the reflection intensities were performed on
an Enraf-Nonius Kappa CCD diffractometer (graphite monochromated
[1] Comprehensive Supramolecular Chemistry, Vol. 9 (Eds.: J. M. Lane,
J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vçgtle), Pergamon,
Oxford, 1996.
[2] G. F. Swiegers, T. J. Malefetse, Chem. Rev. 2000, 100, 3483–3538.
[3] Micelles, Microemulsions and Monolayers (Ed.: D. O. Shah), Sci-
ence and Technology, M. Dekker, New York, 1998.
[4] G. Schmid, Adv. Eng. Mater. 2001, 3, 737–743.
[5] G. Schmid, B. Corain, Eur. J. Inorg. Chem. 2003, 3081–3098.
[7] V. Balzani, A. Credi, M. Venturi, ChemPhysChem 2003, 4, 49–59.
[8] J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, 1995.
MoKa radiation, l = 0.71073 ꢃ.). Colourless plate, 0.10ꢆ0.10ꢆ0.12 mm,
¯
triclinic, space group P1,
a = 10.3990(2), b = 15.6630(3), c =
16.3371(4) ꢃ, a = 100.6870(9), b = 103.4880(10), g = 101.3648(10)8, T
123 K, 2, mcalcd
2460.98(9) ꢃ3, 1.124 gcmÀ3
0.072 mmÀ1
F(000) 916. Number of reflections measured 26534
=
V
=
Z
=
=
, m =
,
=
(unique 13990); 5703 observed reflections (I>3s (I)), which were used
for the determination (direct methods, Denzo/Scalepack,[46] SIR92[47]).
CRYSTALS[48] was used for structure refinement. The refinement con-
verged at R
= 0.1285 (all data), 0.0485 (observed I>3s(I)), wR =
[9] F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegs-
gaard, I. Stensgaard, C. Joachim, F. Besenbacher, Prog. Surf. Sci.
2003, 71, 95–146.
0.1289 (all data), 0.0565 (observed I>3s(I)), min and max residual elec-
tron density 0.41 and À0.26 e ꢃÀ3. CCDC -251173 contains the supple-
mentary crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via
[10] S. Chiang, Chem. Rev. 1997, 97, 1083–1096.
[11] D. M. Eigler, E. K. Schweizer, Nature 1990, 344, 524–526.
[12] G. Meyer, B. Neu, K.-H. Rieder, Appl. Phys. A 1995, 60, 343–345.
[13] S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 2000,
85, 2777–2780.
[14] K. Kim, K. E. Plass, A. J. Matzger, Langmuir 2003, 19, 7149–7152.
[15] C.-J. Li, Q.-D. Zeng, Y.-H. Liu, L.-J. Wan, C. Wang, C.-R. Wang, C.-
L. Bai, ChemPhysChem 2003, 4, 857–859.
[16] A. Troisi, M. A. Ratner, Nano Lett. 2004, 4, 591–595.
[17] T. A. Jung, R. R. Schlittler, J. K. Gimzewski, Nature 1997, 386, 696–
698.
Preparation of monolayers: The monolayers were prepared by solution
casting. A small droplet of a dilute solution (about 0.2mm) was placed
onto a freshly cleaved piece of HOPG. After the evaporation of the sol-
vent, the sample was ready for measurements. Perpendicular to the
“coffee cup rings” left on the surface by the gradual evaporation of the
solvent, a gradient of concentration was found; with any given sample,
various concentrations of molecules per surface area could be measured.
STM: A commercial Nanoscope III equipped with a low-current convert-
er was used in all measurements. Mechanically cut Pt-Ir wire was used
for tips. The piezo scanner was carefully calibrated with Si-grids and
HOPG atoms (for the X and Y axes) and with atomic gold steps (for the
Z axes). Nevertheless, the apparent height in STM images is not a height
of the molecule but a relative value, describing rather the relative con-
ductivity/tunnelling of the molecules versus the surrounding medium.
Some molecules can be imaged with negative height.[49] The measure-
ments presented in this paper were all recorded with the following pa-
rameters (exceptions are noted in the figure captions). Ubias = À600–
À700 mV, It = 6–20 pA, the scanning frequency was 1 Hz. All images
were flattened, but no other image filtering or manipulation was em-
ployed, unless noted in the Figure caption. Errors caused by thermal drift
of the apparatus could be excluded by carefully checking follow-up scans
of the opposite slow scanning direction.
[18] A. Stabel, R. Heinz, F. C. De Schryver, J. P. Rabe, J. Phys. Chem.
1995, 99, 505–507.
[19] S.-B. Lei, L.-J. Wan, C. Wang, C.-L. Bai, Adv. Mater. 2004, 16, 828–
831.
[20] F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joa-
chim, Phys. Rev. Lett. 2001, 86, 672–675.
[21] J. K. Spong, H. A. Mizes, L. J. J. LaComb, M. M. Dovek, J. E.
Frommer, J. S. Foster, Nature 1989, 338, 137–139.
[22] E. C. Constable, B. A. Hermann, C. E. Housecroft, L. Merz, L. J.
Scherer, Chem. Commun. 2004, 928–929.
[23] I. Widmer, U. Hubler, M. Stçhr, L. Merz, H.-J. Gꢁntherodt, B. A.
Hermann, P. Samorꢇ, J. P. Rabe, P. B. Rheiner, G. Greiveldinger, P.
Murer, Helv. Chim. Acta 2002, 85, 4255–4263.
[24] S. De Feyter, A. Gesquiꢈre, M. M. Abdel-Mottaleb, P. C. M. Grim,
F. C. De Schryver, Acc. Chem. Res. 2000, 33, 520–531.
[25] X. Qiu, C. Wang, Q. Zeng, B. Xu, S. Yin, H. Wang, S. Xu, C. Bai, J.
Am. Chem. Soc. 2000, 122, 5550–5556.
[26] G. P. Lopinski, D. J. Moffatt, D. D. M. Wayner, R. A. Wolkow,
Nature 1998, 392, 909–911.
Averaging procedure: To reduce the interaction of the tip with the ob-
served sample, very low tunnelling currents were needed. This resulted in
a higher noise level. One possible way to reduce the noise is by using an
averaging procedure. We used a procedure programmed for the SXM-
shell (University of Basel),[50] that cuts subimages and calculates an aver-
aged image of these. It is crucial, that these averaging procedures are ap-
plied with care; for example, it is easily possible to reduce the apparent
symmetry of the trimeric pattern to a threefold symmetry.
[27] H. Fang, L. C. Giancarlo, G. W. Flynn, J. Phys. Chem. B 1999, 103,
5712–5715.
[28] D. G. Yablon, L. C. Giancarlo, G. W. Flynn, J. Phys. Chem. B 2000,
104, 7627–7635.
[29] T. Zambelli, H. Tang, J. Lagoute, S. Gauthier, A. Gourdon, C. Joa-
chim, Chem. Phys. Lett. 2001, 348, 1–6.
The three-dimensional vector representations of the measurements were
made with POV-Ray for Windows v.3.5 (www.povray.org).
[30] S. De Feyter, F. C. De Schryver, Chem. Soc. Rev. 2003, 32, 139–150.
[31] W. Ho, J. Chem. Phys. 2002, 117, 11033–11061.
[32] P. B. Rheiner, D. Seebach, Chem. Eur. J. 1999, 5, 3221–3236.
[33] A. Miura, Z. Chen, H. Uji-i, S. De Feyter, M. Zdanowska, P. Jonk-
heijm, A. P. H. J. Schenning, E. W. Meijer, F. Wꢁrthner, F. C. De
Schryver, J. Am. Chem. Soc. 2003, 125, 14968–14969.
[34] S. De Feyter, M. M. S. Abdel-Mottaleb, N. Schuurmans, B. J. V. Ver-
kuijl, J. H. van Esch, B. L. Feringa, F. C. De Schryver, Chem. Eur. J.
2004, 10, 1124–1132.
Quantification of two-dimensional structural motifs: In contrast to three-
dimensional crystal structures, the number of possible arrangements in
two dimensions is relatively small.[51] In total, there are 17 plane (space)
groups and it is convenient to quantify the structure of the monolayers in
crystallographic terms. The trimeric arrangements of both 3 and 4 have
identical parameters and are in plane group p6 (no. 16) with a = 5.4 nm,
Z = 7. The dimeric arrangements of 3 and 4 are also identical and corre-
spond to plane group p2 (no. 2), a = 2.6; b = 3.1 nm; a = 588; Z = 2.
Chem. Eur. J. 2005, 11, 2307 – 2318
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2317