C O M M U N I C A T I O N S
Table 1. Second Alkylation Using the Cation Pool Methoda and
Cyclization Using Metathesisb
nyl)ethyl 4-nitrobenzenesulfonate15d afforded 13. Intramolecular
Heck-type ring-closing reaction of 13 with palladium catalyst15c,16
gave 14 as a single stereoisomer. Because compound 14 is known
to be converted to 12 in four steps (75% total yield),17 a formal
total synthesis of 12 was achieved.
a After electrolysis (2.5 F/mol based on the carbamates) at -78 °C using
a divided cell, to the “cation pool” thus generated was added the carbon
nucleophile (2 equiv) to give the product. b Reaction was carried out in
benzene at room temperature using 5 mol % Grubbs catalyst (bis(tricyclo-
hexylphosphine)benzylidineruthenium (IV) dichloride).14a
In conclusion, the present strategy opens a new aspect of the
synthesis of nitrogen-containing compounds having a quaternary
carbon center, especially spiro compounds. We are currently
expanding our focus to its combinatorial aspects.
that might be otherwise oxidized during an in situ process, such as
organo magnesium, zinc, and aluminum reagents can be used
without any difficulty.12c Thus, the oxidation of 3 was carried out
at -78 °C in the absence of a nucleophile, and the resulting
2-silylpyrrolidinium ion was allowed to react with nucleophiles,
such as allyltrimethylsilane or homoallylmagnesium bromide, to
obtain the corresponding coupling products (eq 2).
Acknowledgment. The work was supported by a Grant-in-Aid
for Scientific Research from the Ministry of Education, Science,
Sports, and Culture, Japan.
Supporting Information Available: Experimental procedures and
spectroscopic and analytical data of new compounds (PDF). This
References
(1) (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103,
1172. (b) Shono, T.; Matsumura, Y.; Uchida, K.; Kobayashi, H. J. Org.
Chem. 1985, 50, 3243. (c) Moeller, K. D. Tetrahedron 2000, 56, 9527.
(2) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc.
Chem. Res. 1996, 29, 552 and references therein.
(3) (a) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994,
116, 3231. (b) Wu, S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1996, 118,
715. (c) Snieckus, V.; Rogers-Evans, M.; Beak, P.; Lee, W. K.; Yum, E.
K.; Freskos, J. Tetrahedron Lett. 1994, 35, 4067. (d) Wilkinson, T. J.;
Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155.
In the next step, 4 and 5 were again oxidized using the “cation
pool” method to introduce the second carbon nucleophiles (eq 3,
Table 1).
(4) Yoshida, J.; Nishiwaki, K. J. Chem. Soc., Dalton Trans. 1998, 2589.
(5) (a) Yoshida, J.; Maekawa, T.; Murata, T.; Matsunaga, S.; Isoe, S. J. Am.
Chem. Soc. 1990, 112, 1962. (b) Yoshida, J.; Isoe, S. Tetrahedron Lett.
1987, 28, 6621. (c) Sun, H.; Moeller, K. D. Org. Lett. 2002, 4, 1547. See
also ref 4 and references therein.
(6) (a) Xu, W.; Zhang, X.-M.; Mariano, P. S. J. Am. Chem. Soc. 1991, 113,
8863. (b) Gutenberger, G.; Steckhan, E.; Blechert, S. Angew. Chem., Int.
Ed. 1998, 37, 660.
(7) (a) Narasaka, K. Pure Appl. Chem. 1997, 69, 601. (b) Pandey, G.; Sahoo,
A. K.; Gadre, S. R.; Bagul, T. D.; Phalgune, U. D. J. Org. Chem. 1999,
64, 4990.
(8) (a) Yoshida, J.; Watanabe, M.; Toshioka, H.; Imagawa, M.; Suga, S. Chem.
Lett. 1998, 1011. (b) Yoshida, J.; Watanabe, M.; Toshioka, H.; Imagawa,
M.; Suga, S. J. Electroanal. Chem. 2001, 507, 55.
Although it was difficult to introduce the alkenyl group using
vinylmagnesium bromide, the use of vinyl zinc reagent13 resulted
in the satisfactory yield. Lower basicity of the organozinc reagent
seems to be responsible for a smooth reaction.12c
To demonstrate the synthetic potential of this strategy, we
combined the present sequential transformation with ring-closing
metathesis to synthesize nitrogen-containing spiro compounds
having pyrrolidine skeleton (eq 4).
(9) Beak, P.; Lee, W.-K. Tetrahaderon Lett. 1989, 30, 1197.
(10) The chemistry of bis(trimethylsilyl)methylamine, see: Picard, J.-P. Can.
J. Chem. 2000, 78, 1363.
(11) Pandey, G.; Bagul, T. D.; Sahoo, A. K. J. Org. Chem. 1998, 63, 760.
(12) (a) Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.;
Fujiwara, K. J. Am. Chem. Soc. 1999, 121, 9546. (b) Suga, S.; Suzuki,
S.; Yamamoto, A.; Yoshida, J. J. Am. Chem. Soc. 2000, 122, 10244. (c)
Suga, S.; Okajima, M.; Yoshida, J. Tetrahedron Lett. 2001, 42, 2173. (d)
Suga, S.; Suzuki, S.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 30. (e)
Yoshida, J.; Suga, S. Chem. Eur. J. 2002, 8, 2650.
(13) Oppolzer, W.; Radinov, R. N. HelV. Chim. Acta 1992, 75, 170.
(14) (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. A combination
of anodic oxidation and ring-closing metathesis, see: (b) Beal, L. M.;
Liu, B.; Chu, W.; Moeller, K. D. Tetrahedron 2000, 56, 10113.
(15) Recent examples: (a) Isono, N.; Mori, M. J. Org. Chem. 1995, 60, 115.
(b) Lin, X.; Kavash, R. W.; Mariano, P. S. J. Org. Chem. 1996, 61, 7335.
(c) Tietze, L. F.; Schirok, H. J. Am. Chem. Soc. 1999, 121, 10264. (d)
Tietze, L. F.; Schirok, H.; Wo¨hrmann, M.; Schrader, K. Eur. J. Org. Chem.
2000, 6, 2433. (e) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T. Org.
Lett. 2002, 4, 885.
Ring-closing metathesis14 is one of the most powerful and reliable
approaches to construct a ring system from diolefin. As shown in
Table 1, pyrrolidine derivatives having two olefinic groups were
successfully converted to spiro compounds using Grubbs catalyst
in high yields. Thus, the sequential transformation of 3 followed
by ring-closing metathesis proved to be a powerful and straight-
forward access to nitrogen-containing spiro compounds.
The present approach has been successfully applied to the
synthesis of cephalotaxine (12) (eq 5),15 which is the parent
compound of the antileukemic-active harringtonines, a group of
uniquely structured pentacyclic alkaloids having a nitrogen-contain-
ing spiro system. Thus, the deprotection of compound 11 by TMSI
followed by the reaction with 2-(6-iodo-3,4-methylene-dioxyphe-
(16) Herrmann, W. A.; Brossmer, C.; O¨ fele, K.; Reisinger, C.-P.; Priermeier,
T.; Beller, M.; Fischer, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1844.
(17) Kuehne, M. E.; Bornmann, W. G.; Parsons, W. H.; Spitzer, T. D.; Blount,
J. F.; Zubieta, J. J. Org. Chem. 1988, 53, 3439.
JA028663Z
9
J. AM. CHEM. SOC. VOL. 124, NO. 50, 2002 14825