hydrogen atoms were refined anisotropically, H atoms localized by
difference electron density and refined using a ‘riding’ model. wR2 = 0.136
{R1 = 0.049 [I > 2s(I)]}. An empirical absorption correction on the basis
of Y-scans was applied. Selected bond lengths (Å) and angles (°):
P(1)–N(1) 1.566(3), P(1)–C(19) 1.837(3), N(1)–C(1) 1.429(4); P(1)–N(1)–
region as in 2. The composition of 3 was further deduced from
the high-resolution mass spectrum.
We thank the Deutsche Forschungsgemeinschaft, the Fonds
der Chemischen Industrie for generous financial support and the
Graduierten Kolleg for a grant (A. R.).
C(1) 120.2(2), C(19)–P(1)–N(1) 110.4(2), C(1)–N(1)–P(1)–C(19)–
–
178.7(2). For 2: C29H58NPSi3, M = 536.0, triclinic, space group P1 (no. 2),
yellow crystals, dimensions 0.60 3 0.70 3 0.80 mm3, a = 9.182(3),
Footnotes
b
g
=
=
13.539(5), c
82.42(3)°,
=
U
15.247(5) Å, a
=
65.59(3), b
= 84.94(3),
† Spectroscopic data for 1: Yield 76.1% mp 78–81 °C. 31P NMR (C6D6): d
500.4; 1H NMR (C6D6): d 0.53 (s, 27 H, SiMe3), 1.50 (s, 9 H, p-But), 1.68
(s, 18 H, o-But), 7.67 (s, 2 H, C6H2); 13C NMR (C6D6): d 5.4 (d, 3JPC 4.4
Hz, SiMe3), 32.2 (s, o-CCH3), 34.6 (d, JPC 2.6 Hz, p-CCH3), 34.9 (s,
=
1710(1) Å3, Dc
=
1.04 mg m23
,
Z = 2, m(MoKa) = 0.20 mm21, T = 293(2) K, F(000) = 592.6025
symmetry independent reflections were used for the structure solution
(direct methods) and refinement (full-matrix least-squares on F2, 444
parameters, 540 restraints). Non-hydrogen atoms were refined anisotrop-
ically, H atoms localized by difference electron density and refined using a
‘riding’ model, wR2 = 0.184 {R1 = 0.062 [I > 2s(I)]}. The p-But and the
C(SiMe3)3 group were disordered. Atomic coordinates, bond lengths and
angles, and thermal parameters have been deposited at the Cambridge
Crystallographic Data Centre (CCDC). See Information for Authors, Issue
No. 1. Any request to the CCDC for this material should quote the full
literature citation and the reference number 182/318.
1
p-CCH3), 37.2 (s, o-CCH3), 47.9 (d, JPC 100.3 Hz, p-CSi3), 122.7 (s,
m-Ar), 137.2 (d, 3JPC 11.7 Hz, o-Ar), 143.0 (s, p-Ar), 150.7 (d, 2JPC 15.7 Hz,
ipso-Ar). MS (20 eV, EI) m/z (%) 521 (7%) [M+], 290 (100) [PNMes*+].
For 2: Yield 82.6%, mp 86–90 °C. 31P NMR (C6D6): d 157.8; 1H NMR
(C6D6): d 0.56 (s, 27 H, SiMe3), 1.51 (s, 9 H, p-But), 1.84 (s, 18 H, o-But),
3.10 (d, 2JHH 7.7 Hz, 2JPH < 1.0 Hz, 1 H, PNCH2), 3.38 (dd, 2JHH 7.7, 2JPH
14.1 Hz, 1 H, PNCH2), 7.65 (d, 6JPH 2.2 Hz, 2 H, C6H2); 13C NMR (C6D6):
d 6.0 (d, 3JPC 3.1 Hz, SiMe3), 17.2 (d, 1JPC 28.5 Hz, P-CSi3), 32.3 (d, 7JPC
5
6
1.7 Hz, p-CCH3), 33.2 (d, JPC 1.4 Hz, o-CCH3), 35.0 (d, JPH 1.9 Hz,
p-CCH3), 37.5 (d, 4JPH 2.3 Hz, o-CCH3), 64.2 (d, 1JPC 108.2 Hz, PNCH2),
123.0 (d, 4JPH 5.7 Hz, m-Ar), 141.5 (d, 3JPC 11.8 Hz, o-Ar), 142.2 (d, 5JPH
6.5 Hz, p-Ar), 146.2 (d, 2JPC 13.4 Hz, ipso-Ar). The CH2 group is confirmed
by a DEPT 135 experiment. MS (20 eV, EI) m/z (%) 535 (4) [M+], 73 (100)
[(CH3)3Si+] (Found: M+, 535.3614. C29H58N1:Si3P1 requires 535.3620).
For 3: Yield 84.7%, mp 82–84 °C. 31P NMR (C6D6): d 129.5; 1H NMR
(C6D6): d 0.29 (s, 9 H, SiMe3), 0.31 (s, 9 H, SiMe3), 0.39 (s, 9 H, SiMe3),
References
1 A. W. Johnson, in Ylids and Imines of Phosphorus, Wiley, New York,
1993.
2 B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863;
H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1983, 22, 907.
3 R. Appel, C. Casser, M. Immenkeppel and F. Knoch, Angew. Chem., Int.
Ed. Engl., 1984, 23, 895; J. Organomet. Chem., 1985, 293, 213;
K. Issleib, H. Schmidt and C. Wirkner, Z. Anorg. Allg. Chem., 1982, 488,
75.
4 E. Niecke and D.-A. Wildbredt, Chem. Ber., 1980, 113, 1549.
5 E. Niecke, M. Nieger and F. Reichert, Angew. Chem., 1988, 100, 1781;
Angew. Chem., Int. Ed. Engl., 1988, 27, 1715.
2
1.51 (s, 9 H, p-But), 1.74 (s, 18 H, o-But), 2.0 (d, JPH 16.1 Hz, 2 H,
SiMe3CH2), 7.55 (d, 6JPH 2.2 Hz, 2 H, C6H2); 13C NMR (C6D6): d 1.14 (d,
3JPC 3.4 Hz, PNCSiMe3), 4.37 (d, 3JPC 4.9 Hz, PNCSiMe3), 5.6 (d, 3JPC 5.0
1
7
Hz, SiMe3CH2), 21.7 (d, JPC 62.3 Hz, P–C(SiMe3)H2), 32.1 (d, JPC 1.2
Hz, p-CCH3), 32.3 (d, 5JPC 1.7 Hz, o-CCH3), 35.0 (d, 6JPH 1.5 Hz, p-CCH3),
37.0 (d, 4JPH 1.9 Hz, o-CCH3), 68.3 [d, 1JPC 43.1 Hz, PNC(SiMe3)2], 122.5
(d, 4JPH 4.2 Hz, m-Ar), 140.0 (d, 3JPC 10.3 Hz, o-Ar), 142.2 (d, 5JPH 5.0 Hz,
2
6 E. Niecke, A. Seyer and D.-A. Wildbredt, Angew. Chem., 1981, 93, 687;
Angew. Chem., Int. Ed. Engl., 1981, 20, 675.
p-Ar), 144.7 (d, JPC 10.3 Hz, ipso-Ar). MS (20 eV, EI) m/z (%) 535(3)
[M+], 73 (100) [(CH3)3Si+].
–
7 M. Regitz and O. J. Scherer, Multiple Bonds and Low Coordination in
Phosphorus Chemistry, Thieme Verlag, New York, 1989.
8 W. Schilbach, V. von der Go¨nna, D. Gudat, M. Nieger and E. Niecke,
Angew. Chem., 1994, 106, 1037; Angew. Chem., Int. Ed. Engl., 1994, 33,
982.
‡ Crystal data for 1: C28H56NPSi3, M = 522.0, triclinic space group P1 (no.
2), red crystals, dimensions 0.10 3 0.20 3 0.38 mm3, a = 9.814(3),
b
g
=
=
13.580(5), c
79.20(3)°, U
=
=
14.113(4) Å, a
=
=
64.38(3), b
=
82.94(2),
2,
1664(1) Å3, Dc
1.04 mg m23, Z
=
m(CuKa) = 1.87 mm21, T = 200(2) K, F(000) = 576.5647 symmetry
independent reflections were used for the structure solution (direct methods)
and refinement (full-matrix least-squares on F2, 316 parameters). Non-
Received, 30th October 1996; Com. 6/07402B
294
Chem. Commun., 1997