S. Harder, J. Spielmann / Journal of Organometallic Chemistry 698 (2012) 7e14
13
signal for the major species was assigned to the B(cat)ꢁ2 ion.
Asymmetry in the 1H NMR spectrum is caused by coordination to
Ca2þ (like in 4). See Table 2, Fig. 1 and the discussion for the
assignment of other 11B signals.
Details for the refinement of [DIPPnacnacCa(H2Bpin)]3 (6): The
H2Bpinꢁ ligand shows strong disorder due to ring-puckering in the
five-membered ring. This was solved with an appropriate disorder
model but affects the quality of the structure. All hydrogen atoms,
except those on B, have been placed on calculated positions and
were refined in a riding mode. The hydrogen atoms on B have been
found in the Difference-Fourier map and were refined isotropically.
The asymmetric unit contains two cocrystallized benzene mole-
cules. One is relatively ordered and was refined with large aniso-
tropic displacement parameters, the other is completely disordered
and was treated with the SQUEEZE procedure (hole: 250 Å3, 59
electrons) incorporated in PLATON [47].
4.4. Synthesis of DIPPnacnacCa(BH4)$(THF)2 (5)
[(DIPPnacnac)CaH$(THF)]2 (1, 212 mg; 0.40 mmol) were dis-
solved in 1.3 ml of THF. To this solution was slowly added
BH3(Me2S) (33 mg, 0.43 mmol). Slow cooling of the resulting
solution to 8 ꢀC gave the crystalline product in the form of large
colourless blocks. Yield: 148 mg, 0.24 mmol, 60%. Anal. (%): Calcd.
for C37H61BCaN2O2 (616.78): C, 72.05; H, 9.97. Found: C, 71.71; H
9.71. 1H NMR (300 MHz, benzene-d6, 25 ꢀC):
d
¼ ꢁ0.14 (q,
Acknowledgement
3
1JB,H ¼ 82.2 Hz, 4H, BH4), 1.23 (d, JH,H ¼ 6.8 Hz, 12H, iPr), 1.25 (d,
3JH,H ¼ 6.8 Hz,12H, iPr),1.33 (m, 8H, THF),1.68 (s, 6H, Me backbone),
We are grateful to the Deutsche Forschungsgemeinschaft for
financing this project and acknowledge Prof. R. Boese and D. Bläser
for collection of the X-ray data.
3
3.24 (sept, JH,H ¼ 6.8 Hz, 4H, iPr), 3.53 (m, 8H, THF), 4.80 (s, 1H,
backbone), 7.13 (m, 6H, aryl); 11B NMR (160 MHz, benzene-d6,
25 ꢀC):
d8, 25 ꢀC):
d
¼ ꢁ33.3 (quint, 1JB,H ¼ 82.2 Hz); 11B NMR (160 MHz, THF-
d
¼ ꢁ35.0 (quint, 1JB,H ¼ 82.2 Hz); 13C NMR (300 MHz,
Appendix A. Supplementary material
benzene-d6, 25 ꢀC):
d
¼ 24.8 (iPr), 25.0 (iPr), 25.1 (Me backbone),
25.5 (iPr), 28.4 (THF), 69.0 (THF), 94.5 (backbone),123.8 (aryl),124.5
Crystallographic data (excluding structure factors) for the
structure of DIPPnacnacCa(BH4)$(THF)2 (5) (CCDC 836486) and
[DIPPnacnacCa(H2Bpin)]3 (6) (CCDC 836485) can be obtained free
of charge from the Cambridge Crystallographic Data Centre: CCDC,
12 Union Road, Cambridge, CB2 1EZ, UK (Fax: þ44-1223-336033; e-
(aryl), 142.1 (aryl), 146.9 (aryl), 165.8 (backbone).
4.5. Synthesis of [DIPPnacnacCa(H2Bpin)]3 (6)
A solution of [(DIPPnacnac)CaH$(THF)]2 (1, 200 mg; 0.38 mmol)
and excess of HBpin (191 mg; 1.49 mmol) in 3.0 ml of benzene was
stirred for 40 min at room temperature and then cooled to 8 ꢀC.
After circa 30 min crystals of [(DIPPnacnac)Ca(H2Bpin)]3 in the
form of colourless blocks appeared. These were immediately iso-
lated from the cloudy mother liquor. Prolonged crystallization
times led to decomposition of the product. Yield: 120 mg,
0.18 mmol, 48%. Anal. (%): Calcd. for C35H55BCaN2O2$(C6H6)
(664.45): C, 74.07; H, 9.25. Found: C, 74.52; H 8.92. 1H NMR
References
[1] H.C. Brown, Isr. J. Chem. 25 (1985) 84.
[2] H.C. Brown, M.M. Midland, G.W. Kabalka, J. Am. Chem. Soc. 93 (1971) 1024.
[3] M.W. Rathke, N. Inoue, K.R. Varma, H.C. Brown, J. Am. Chem. Soc. 88 (1966) 2870.
[4] G.W. Kabalka, E.E. Gooch III, J. Org. Chem. 45 (1980) 3578.
[5] First example of catalytic hydroboration with catecholborane D. Mannig,
H. Nöth, Angew. Chem. Int. Ed. Engl. 24 (1985) 878.
[6] Reviews: (a) K. Burgess, M.J. Ohlmeyer, Chem. Rev. 91 (1991) 1179;
(b) H. Wadepohl, Angew. Chem. Int. Ed. Engl. 36 (1997) 2441;
(c) I. Beletskaya, A. Pelter, Tetrahedron 53 (1997) 4957;
(d) C.M. Crudden, D. Edwards, Eur. J. Org. Chem. (2003) 4695;
(e) C.M. Vogels, S.A. Westcott, Curr. Org. Chem. 9 (2005) 687.
[7] D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc. 110 (1988) 6917.
[8] S.A. Westcott, H.P. Blom, T.B. Marder, R.T. Baker, J. Am. Chem. Soc. 114 (1992)
8863.
[9] D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc. 114 (1992) 6671.
[10] K. Burgess, M.J. Ohlmeyer, Tetrahedron Lett. 30 (1989) 395.
[11] K. Burgess, J. Cassidy, M.J. Ohlmeyer, J. Org. Chem. 56 (1991) 1020.
[12] K. Burgess, M.J. Ohlmeyer, J. Org. Chem. 56 (1991) 1027.
[13] J. Zhang, B. Lou, G. Guo, L. Dai, J. Org. Chem. 56 (1991) 1670.
[14] A. Schnyder, L. Hintermann, A. Togni, Angew. Chem. Int. Ed. Engl. 34 (1995) 931.
[15] A. Leyva, X. Zhang, A. Corma, Chem. Commun. (2009) 4947.
[16] K.N. Harrison, T.J. Marks, J. Am. Chem. Soc. 114 (1992) 9221.
[17] K. Burgess, W.A. van der Donk, Organometallics 13 (1994) 3616.
[18] K. Burgess, W.A. van der Donk, J. Am. Chem. Soc. 116 (1994) 6561.
[19] E.A. Bijpost, R. Duchateau, J.H. Teuben, J. Mol. Catal. A.: Chem. 95 (1995)
121.
(300 MHz, benzene-d6, 25 ꢀC):
6H, Me H2Bpin), 1.19 (d, JH,H
d
¼ 0.89 (s, 6H, Me H2Bpin), 0.90 (s,
3
¼
6.4 Hz, 6H, iPr), 1.26 (d,
3JH,H ¼ 6.7 Hz, 6H, iPr), 1.34 (d, JH,H ¼ 6.9 Hz, 6H, iPr), 1.46 (d,
3JH,H ¼ 6.9 Hz, 6H, iPr), 1.68 (s, 6H, Me backbone), 3.07 (sept,
3JH,H ¼ 6.9 Hz, 2H, iPr), 3.33 (br, 2H, H2B), 3.42 (sept, 3JH,H ¼ 6.9 Hz,
2H, iPr), 4.74 (s, 1H, backbone), 7.17e7.14 (m, 4H, aryl); 11B NMR
3
(160 MHz, benzene-d6, 25 ꢀC):
d
¼ 2.1 (t br, 1JB,H ¼ 91 Hz); 13C NMR
(300 MHz, benzene-d6, 25 ꢀC):
d
¼ 25.6 (iPr), 25.8 (iPr), 25.8 (iPr),
26.0 (iPr), 26.7 (Me backbone), 29.5 (iPr), 29.8 (H2Bpin), 29.9
(H2Bpin), 81.5 (H2Bpin), 82.5 (H2Bpin), 95.0 (backbone), 125.1
(aryl), 125.1 (aryl), 125.9 (aryl), 129.1 (aryl), 142.7(aryl), 143.4 (aryl),
148.9 (aryl), 166.9 (backbone).
4.6. Crystal structure determinations for DIPPnacnacCa(BH4)$(THF)2
(5) and [DIPPnacnacCa(H2Bpin)]3 (6)
[20] S. Pereira, M. Srebnik, Organometallics 14 (1995) 3127.
[21] X. He, J.F. Hartwig, J. Am. Chem. Soc. 118 (1996) 1696.
[22] S. Harder, J. Brettar, Angew. Chem. Int. Ed. Engl. 45 (2006) 3474.
[23] F. Buch, J. Brettar, S. Harder, Angew. Chem. Int. Ed. Engl. 45 (2006) 2741.
[24] J. Spielmann, F. Buch, S. Harder, Angew. Chem. Int. Ed. Engl. 47 (2008)
9434.
[25] S. Harder, Chem. Rev. 110 (2010) 3852.
[26] A.G.M. Barrett, M.R. Crimmin, M.S. Hill, P.A. Procopiou, Proc. R. Soc. A. 466
(2010) 927.
[27] J. Spielmann, S. Harder, Chem. Eur. J. 13 (2007) 8928.
[28] (a) S. Harder, F. Feil, A. Weeber, Organometallics 20 (2001) 1044;
(b) S. Harder, F. Feil, K. Knoll, Angew. Chem. Int. Ed. 40 (2001) 4261;
(c) S. Harder, F. Feil, Organometallics 21 (2002) 2268;
(d) F. Feil, C. Müller, S. Harder, J. Organomet. Chem. 683 (2003) 56;
(e) F. Feil, S. Harder, Eur. J. Inorg. Chem. (2003) 3401;
(f) D.F.-J. Piesik, K. Häbe, S. Harder, Eur. J. Inorg. Chem. (2007) 5652.
[29] K. Burgess, M. Jaspars, Tetrahedron Lett. 34 (1993) 6813.
[30] D. Männig, H. Nöth, J. Organomet. Chem. 275 (1984) 169.
[31] E. Hanecker, H. Nöth, J. Moll, Z. Naturforsch. B. 38 (1983) 424.
Crystal data for both structures are summarized in Table 4.
Details for the refinement of DIPPnacnacCa(BH4)$(THF)2 (5):
The asymmetric unit contains two independent molecules. Pseudo
C-symmetry was confirmed by the presence of weak but signifi-
cant h þ k ¼ 2n reflections and refinement has been done in a P-
lattice with two nearly equal independent molecules in the
asymmetric unit. The asymmetric unit contains one cocrystallized
THf molecule which was severely disordered. This molecule was
treated with the SQUEEZE procedure (hole around i: 230 Å3, 98
electrons) incorporated in PLATON [44]. All H atoms, except those
on the THF ligands, could be found in the Difference-Fourier map
and were refined isotropically. The hydrogen atoms on the THF
ligands were placed on calculated positions and were refined in
a riding mode.