–
–
–
B(OH)2
B(OH)2
B(OH)
B(OH)
B(OH)2
2 B(OH)2
2 B(OH)2
B(OH)2
H
N
N
N
N
+
Naph =
Naph
Naph
Naph
Naph
2H+
2
2–
22–
Scheme 2
the two diols, Dn = 0 in Table 1), do a large fluorescence
increase and a large K value result. Glycerine and propane-
1,3-diol, which have only one binding site, cannot enhance the
fluorescence intensity. d-Glucose (Dn = 1) and mannitol
derivative 3 (Dn = 2), in which two binding sites are separated
by one or two carbons, cannot enhance the fluorescence either.
Other compounds which can enhance the fluorescence intensity
have two (or more than two) binding sites and Dn = 0 without
exception. Even in those compounds with a choice of binding
site, Dn = 0–2, the most stable complex should be the one with
Dn = 0.
1.6
1.4
1.2
I
I
The formation of the cyclic structures is further supported by
the fact that the complexes become CD active. For example, 2
(1 3 1025 mol dm23) in the presence of sorbitol (0.10
mol dm23) gave [q]max 22.16 3 104 deg cm2 dmol21 for d-
sorbitol and 2.16 3 104 deg cm2 dmol21 for l -sorbitol at 228
nm (25 °C, pH 8.0 with 50 mmol dm23 phosphate buffer).
In conclusion we have clearly demonstrated that the selectiv-
ity of a diboronic acid cleft towards saccharides can be modified
in a controlled manner by the correct spacing of two boronic
acid units. This work illustrates the power of the synthetic
saccharide sensor. Unlike enzymatic systems, selectivity can be
designed for one particular saccharide. This offers the possibil-
ity of monitoring the concentrations of biologically important
saccharides which are less abundant than d-glucose, in a variety
of industrial and medicinal applications.
1.0
0.8
0.00
0.02
0.04
0.06
[Sugar] / M
0.08
0.10
0.12
Fig. 2 Plots of I/I0 vs. [saccharide] for selected saccharides: (5) d-fructose,
(«) pentaerythritol, (2) d-threitol, ( ~ ) d-glucose, (+)-glycerine, (-) no
saccharide
Table 1 Association constants (K), number of binding sites and number of
carbon separating two binding sites (Dn) at 25 °C and pH 8.0 in H2O–
MeOH, 300:1 v/v
Sugar
log K
Binding site
Dn
T. D. J. wishes to acknowledge the Royal Society for support
through the award of a University Fellowship.
d-Sorbitol
d-Fructose
Dulcitol
2.54
2.52
2.4
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
0–2
0–1
0–2
0–1
0–2
0
0–1
0
0–1
0
References
Xylitol
2.23
2.15
2.11
1.97
2.03
2.13
1.91
1.50
1.45
a
1 G. Deng, T. D. James and S. Shinkai, J. Am. Chem. Soc., 1994, 116,
4567 and references cited therein; J. Yoon and A. W. Czarnik, J. Am.
Chem. Soc., 1992, 114, 5874; G. T. Morin, M. P. Hughes, M.-F. Paugam
and B. D. Smith, J. Am. Chem. Soc., 1994, 116, 8895 and references
cited therein.
2 G. Wulff, Pure Appl. Chem., 1982, 54, 2093.
3 T. D. James, K. R. A. S. Sandanayake and S. Shinkai, J. Chem. Soc.,
Chem. Commun., 1994, 477.
4 T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Angew. Chem.,
Int. Ed. Engl., 1994, 33, 2207.
5 T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Nature, 1995, 374,
345.
6 T. D. James and S. Shinkai, J. Chem. Soc., Chem. Commun., 1995,
1483.
7 T. D. James, P. Linnane and S. Shinkai, Chem. Commun., 1996, 281; (b)
T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Angew. Chem.,
Int. Ed. Engl., 1996, 108, 2038.
d-Mannitol
Pentaerythritol
Ribitol
d-Threitol
d-Arabitol
d-Ribose
d-Fucose
Erythritol
d-Glucose
Glycerine
Propane-1,3-diol
3b
0
0
1
—
—
2
a
a
a
a The K could not be determined because of the small fluorescence change.
b H2O–MeOH, 2:1 v/v (because of low solubility in water).
8 R. A. Bissel, A. P. de Silva, H. Q. N. Gunaratna, P. L. M. Lynch,
G. E. M. Maguire, C. P. McCoy and K. R. A. S. Sandanayake,
Top. Curr. Chem., 1993, 168, 223.
9 A. W. Czarnik, Fluorescent Chemosensors for Ion and Molecular
Recognition, ACS Books, Washington, 1993.
saccharide concentration (Fig. 2). The results are summarised in
Table 1.
Examination of Table 1 reveals two important features of
compound 2 as a PET sensor: that is, (i) 2 shows selectivity
towards ‘small’ saccharides and (ii) only when they possess two
binding sites (i.e. two diol units associative with a boronic acid)
and they are not separated (i.e. the number of carbons separating
10 J. P. Lorand and J. D. Edwards, J. Org. Chem., 1959, 24, 769.
Received, 24th September 1996; Com. 6/06552J
72
Chem. Commun., 1997