C. O. Kangani et al. / Tetrahedron Letters 47 (2006) 6289–6292
6291
Table 2. One-pot synthesis of aldehydes from carboxylic acids via
in situ generation of Weinreb amides
Supplementary data
A description of the general methods used to prepare,
and spectroscopic data (1H and 13C NMR) for all
products are given in the Supplementary data. Supple-
mentary data associated with this article can be
1) HN(OMe)Me,iPr2NEt, 0 oC
O
O
2) Deoxo-Fluor reagent
3) DIBAL-H/ -78 oC
R1
OH
R1
H
Entry Carboxylic acid
Compound number Yielda (%)
1
2
3
4
5
6
Palmitic acid
Linoleic acid
Elaidic acid
Benzoic acid
p-Toluic acid
13
14
15
16
17
83
79
73
90
86
91
References and notes
1. (a) Mosettig, E. Org. React. 1954, 8, 218–257; (b) Cha, J.
S.; Kim, J. E.; Kim, Y. S. Tetrahedron Lett. 1987, 28,
6231–6234; (c) Corriu, R. J. P.; Lanneau, G. F.; Perrot, M.
Tetrahedron Lett. 1987, 28, 3941–3944; (d) Brown, H. C.;
Cha, J. S.; Nazer, B.; Yoon, N. M. J. Am, Chem. Soc.
1984, 106, 8001–8002.
p-Nitrobenzoic acid 18
a Yield of pure isolated products, characterized by GC–MS, 1H NMR,
and 13C NMR.
2. (a) O’Neill, B. T. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Schreiber, S. L., Eds.; Pergamon
Press: Oxford, 1991; Vol. 1, pp 399–407; (b) Sibi, M. P.
Org. Prep. Proceed. Int. 1993, 25, 15–40; (c) Mentzel, M.;
Hoffmann, H. M. R. J. Prakt. Chem. 1997, 339, 517–524;
(d) Singh, J.; Satyamurthi, N.; Aidhen, I. S. J. Prakt.
Chem. 1997, 339, 517–524.
entries 6–12). The reaction of unsaturated carboxylic
acids (linoleic acid and elaidic acid) with methylmagne-
sium bromide as well as phenylmagnesium bromide gave
the corresponding ketones in very good yields (Table 1,
entries 2, 3, 8, and 9).
3. Dieter, R. K. Tetrahedron 1999, 55, 4177–4236, and
references cited therein.
Given the encouraging results, we next examined con-
version of carboxylic acids into the corresponding alde-
hydes. Reduction of in situ formed Weinreb amide with
DIBAL-H generated the aldehyde in very good yield.
The Deoxo-Fluor reagent was added dropwise to a mix-
ture of palmitic acid and N,O-dimethylhydroxyamine at
0 °C, stirred for 15 min at room temperature (resulting
in formation of the Weinreb amide) and then cooled
to À78 °C, followed by dropwise addition of DIBAL-
H (7 equiv). After stirring for 1 h, the reaction was
quenched with saturated aqueous NH4Cl and the alde-
hyde was isolated in 83% yield (Table 2, entry 1). Other
representative results are listed in Table 2. The reaction
worked very well with both aliphatic and aromatic carb-
oxylic acids.
´
4. (a) Thibonnet, J.; Vu, V. A.; Berillon, L.; Knochel, P.
Tetrahedron 2002, 58, 4787–4799; (b) Dieter, R. K.;
Sharma, R. P.; Yu, H.; Gore, V. K. Tetrahedron 2003,
59, 1083–1094; (c) Kondo, J.; Inoue, A.; Shinokubo, H.;
Oshima, K. Tetrahedron Lett. 2002, 43, 2399–2402; (d)
Malanga, C.; Aronica, L. A.; Lardicci, L. Tetrahedron
Lett. 1995, 36, 9185–9188.
5. (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22,
3815–3818; (b) Kuethe, J. T.; Comins, D. L. Org. Lett.
2000, 2, 855–857; (c) Davis, F. A.; Chao, B. Org. Lett.
2000, 2, 2623–2625; (d) Smith, A. B., III; Beauchamp, T.
L.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto,
H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000,
122, 8654–8664; (e) Taillier, C.; Bellosta, V.; Cossy, J. Org.
Lett. 2004, 6, 2145–2147; (f) Ghosh, A.; Gong, G. J. Am.
Chem. Soc. 2004, 126, 3704–3705.
In conclusion, we have developed an operationally
simple, one-pot, two-step method for the synthesis of
aldehydes and ketones by addition of, DIBAL-H and
Grignard reagents, respectively, to in situ generated
Weinreb amides. The notable advantages of this proce-
dure are its (a) operational simplicity, (b) general appli-
cability to aromatic and aliphatic (both saturated and
unsaturated) carboxylic acids, (c) reaction conditions
that are tolerant to a variety of sensitive functional
groups, (d) elimination of the need to isolate the inter-
mediate, and (e) high yields. We believe that this proto-
col provides a practical alternative to the existing
methods available for the synthesis of aldehydes and
ketones from their corresponding carboxylic acids.
6. (a) Wakefield, B. J. Organomagnesium Methods in Organic
Synthesis; Academic Press: San Diego, 1995; (b) Suga, K.;
Watanabe, S.; Yamaguchi, Y.; Tohyama, M. Synthesis
1970, 189–190; (c) Watanabe, S.; Suga, K.; Fujita, T.;
Saito, N. Aust. J. Chem. 1970, 30, 427–431.
7. Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fuku-
yama, T. Tetrahedron Lett. 1998, 39, 3189–3192.
8. Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti,
G.; Ricci, A.; Varchi, G. Synlett 1998, 1013–1015.
´
9. (a) Barluenga, J.; Baragana, B.; Concellon, J. M. J. Org.
˜
Chem. 1995, 60, 6696–6699; (b) De Luca, L.; Giacomelli,
G.; Porcheddu, A. Org. Lett. 2001, 3, 1519–1521.
10. (a) Jamieson, G. R.; McMinn, A. L.; Reid, E. H. J.
Chromatogr. 1978, 161, 327–334, and references cited
therein; (b) Cheng, Y.; Li, S.-M. Int. J. Environ. Anal.
Chem. 2004, 84, 367–378.
11. Boger, D. L.; Sato, H.; Lerner, A. E.; Hedrick, M. P.;
Fecik, R. A.; Miyauchi, H.; Wilki, G. D.; Austin, B. J.;
Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 5044–5049, and references cited
therein.
12. Wang, X.-J.; Zhang, L.; Sun, X.; Krishnamurthy, D.;
Senanayake, C. H. Org. Lett. 2005, 7, 5593–5595.
13. The low yield might be due to difference in the reaction
mechanism between acyl fluorides and acyl chlorides. See:
Acknowledgments
This investigation was supported by funding from
National Institutes of Health, NIDDK, (DK046204)
and by the University of Pittsburgh Obesity and Nutri-
tion Research Center (DK46204). We thank Professor
Dennis P. Curran for reviewing the manuscript.