10.1002/chem.201902975
Chemistry - A European Journal
FULL PAPER
for the benzene analogues (C2: 휆푚퐹푎푥= 390 (heptane), 휆푚퐹푎푥
=
Experimental Section
413 nm (water); C9: 휆푚퐹푎푥 = 412 (heptane), 휆푚퐹푎푥 = 475 nm
(water)). A comparison of the emission from aggregates and
from films reveals that the aggregates of TOTs emit at
significantly higher energies than TOTs in solution cast films
( 휆푚퐹푎푥 = 564 - 580 nm) whereas 휆푚퐹푎푥 of TOBs in THF/water
peak at lower energies.
Synthetic procedures, analyses, spectra, and equipment are
collected in the Supporting Information
Acknowledgements
Obviously, the electronic spectra of these stars, especially those
with a triazine center, are strongly controlled by intermolecular
interactions. Surprisingly, a concentration quenching of the
fluorescence in solution is opposed by aggregation-induced
emission. This and the different optical properties of aggregates
and films imply a plethora of molecular arrangements of triazine-
centered stars.
The authors gratefully acknowledge Dr. Johannes Liermann
(NMR), Prof. Dr. F. Laquai (ToF), M. Müller (DSC) and Dr. C.
Kampf (MS), Dr. D. Schollmeyer (Single Crystal X-Ray
Scattering), the Deutsche Forschungsgemeinschaft (DE 515/9-
1) for partial funding and the Carl-Zeiss Stiftung for a generous
fellowship (N. Tober).
Keywords: discotic liquid crystal • fluorescence • heterocycle •
mesophase • star-shaped compound • conjugated Oligomers •
solvatochromism • X-ray scattering • aggregation induced
emission
Conclusions
Two series of discotic molecules composed of three alkoxyaryl-
1,3,4-oxadiazolyl arms attached to a benzene center or electron
deficient triazine core were synthesized via threefold Huisgen
reaction of tetrazoles with trimesic acid trichloride and 2,4,6-
tris(chlorocarbonyl)-1,3,5-triazine as central rings. The latter is
much more sensitive and requires a modified procedure. Almost
all di- and tri-alkoxy substituted TOTs and TOBs exhibited
thermotropic mesophases with the characteristic textures of
hexagonal columnar arrangements. A variation of chain number
and length allows control of the width of mesophase. In general
triazine derivatives have broader mesophases (ΔT 220°C) than
[1] B. Roy, N. De, K. C. Majumdar, Chem. Europ. J. 2012, 18(46),
14560–14588.
[2] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G.
Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni,
Angew. Chem. Int. Ed. 2007, 46(26), 4832–4887.
[3] V. Balzani, G. Bergamini, P. Ceroni, Angew. Chem. Int.Ed. 2015,
54(39), 11320–11337.
[4] S. Kumar, Chemistry of discotic liquid crystals: From monomers to
polymers; CRC Press, Boca Raton, FL, 2011.
[5] V. Balzani, G. Bergamini, P. Ceroni, Angew. Chem. 2015, 127(39),
11474–11492.
benzene analogues (ΔT
170°C). The mesophases are
[6] a) L. Schmidt-Mende, Science 2001, 293, 1119–1122; b) C. W. Tang,
Appl. Phys. Lett. 1986, 48, 183; c) I. Seguy, P. Jolinat, P. Destruel,
J. Farenc, R. Mamy, H. Bock, J. Ip, T. P. Nguyen, J. Appl. Phys.
2001, 89, 5442;
[7] a) W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A.
Tracz, H. Sirringhaus, T. Pakula, K. Müllen, Adv. Mater. 2005, 17,
684–689; b) T. Hassheider, S. A. Benning, M. W. Lauhof, R.
Oesterhaus, S. Alibert-Fouet, H. Bock, J. W. Goodby, M. D. Watson,
K. Muellen, H.-S. Kitzerow in Liquid Crystal Materials, Devices, and
Applications IX; (Ed. L.-C. Chien), Proc. SPIE 2003, 5003, 167-174.
[8] D. Adam, P. Schuhmacher, J. Simmerer, L. Häußling, W. Paulus, K.
Siemensmeyer, K.-H. Etzbach, H. Ringsdorf, D. Haarer, Adv. Mater.
1995, 7, 276–280.
[9] B. R. Kaafarani, Chem. Mater. 2011, 23, 378–396.
[10] M. Bäker, Funktionswerkstoffe; Springer Fachmedien Wiesbaden,
Wiesbaden, 2014.
[11] a) D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill,
Handbook of Liquid Crystals; Wiley, Weinheim, 2011; b) T. Wöhrle, I.
Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J. Litterscheidt, J.
C. Haenle, P. Staffeld, A. Baro, F. Giesselmann, S. Laschat, Chem.
Rev. 2016, 116, 1139–1241.
enantiotropic though several TOTs are crystallization inhibited.
X-Ray diffraction and density measurements on oriented fibres
proved the dense packing of all derivatives in high temperature
hexagonal columnar phases. The 3,4,5-substituted derivatives
(C9, N9) stack with average π - π distances of 3.4-3.5 Å and
with 18 alkyl chains in a columnar stratum of approximately 7 Å
height, i.e. with two molecules. While the carbon analogue C9
show a strong π stacking signal, this is reduced for the triazine
derivative N9, presumably, because of electrostatic repulsion. In
contrast the two chain derivatives C2 and N2 contain three
molecules in a columnar repeat between 7.5-7.7 Å. Again, the
number of chains sum up to 18, but three aromatic cores fill now
the centre of the columns, where a coplanar stacking is not
anymore possible. For all derivatives a denser packing can be
achieved with a Y-shaped conformer of the star, minimising the
intrinsic free space.[44]
[12] a) S.-H. Wu, H.-H. Chen, Tetrahedron 2019, 75, 220–229; b) N.
Röder, T. Marszalek, D. Limbach, W. Pisula, H. Detert,
ChemPhysChem 2019, 20, 463–469; c) C. Cuerva, J. A. Campo, P.
Ovejero, M. R. Torres, E. Oliveira, S. M. Santos, C. Lodeiro, M.
Cano, J. Mater. Chem. C 2014, 2, 9167–9181.
The charge carrier mobilities of TOBs and TOTs (μ = 10-3 - 10-
5cm2V-1s-1) are in the medium range of discotic liquid crystals.
TOBs are colourless and TOTs are yellow to red coloured
substances, their emission behaviour is largely controlled by
intermolecular interactions. Efficient emission in highly diluted
solution, concentration quenching, aggregation induced
emission (enhancement) and sensitivity of the emission
spectrum to solvents, temperature, and aggregation are optical
phenomena that complement the thermal mesomorphism.
[13] a) S. Kumar, Chemical Soc.Rev. 2006, 35, 83–109; b) H. Detert, M.
Lehmann, H. Meier, Materials 2010, 3, 3218–3330.
[14] a) M. Talarico, R. Termine, E. M. García-Frutos, A. Omenat, J. L.
Serrano, B. Gómez-Lor, A. Golemme, Chem. Mater. 2008, 20,
6589–6591; b) M. Vadivel, I. S. Kumar, K. Swamynathan, V. A.
Raghunathan, S. Kumar, ChemistrySelect 2018, 3, 8763–8769; g) A.
Gowda, L. Jacob, D. P. Singh, R. Douali, S. Kumar,
ChemistrySelect 2018, 3, 6551–6560.
[15] a) J. Luo, B. Zhao, J. Shao, K. A. Lim, H. S. On Chan, C. Chi, J.
Mater. Chem. 2009, 19, 8327; b) H. Taing, J. G. Rothera, J. F.
This article is protected by copyright. All rights reserved.