2316
J . Org. Chem. 1997, 62, 2316-2317
Sch em e 1
Su lfu r -Dir ected Asym m etr ic 1,3-Dip ola r
Cycloa d d ition s of Azom eth in e Ylid es w ith
En a n tiop u r e Su lfin im in es†,‡
Alma Viso,*,§ Roberto Ferna´ndez de la Pradilla,*,
Carlos Guerrero-Strachan, Marta Alonso,
Mart´ın Mart´ınez-Ripoll,| and Isabelle Andre´|
Departamento de Quı´mica Orga´nica I,
Facultad de Quı´mica, Universidad Complutense,
E-28040 Madrid, Spain, and Instituto de Qu´ımica
Orga´nica, CSIC, J uan de la Cierva, 3,
E-28006 Madrid, Spain, and Departamento de
Cristalografı´a, Instituto de Quı´mica-Fı´sica Rocasolano,
CSIC, Serrano 119, E-28006 Madrid, Spain
Received February 21, 1997
1,3-Dipolar cycloadditions are fundamental processes
in organic chemistry.1 In particular, the reaction of
azomethine ylides with alkenes is a powerful method for
the synthesis of pyrrolidines since up to four stereo-
centers are set in a single operation.2 This has fueled
intensive efforts toward the development of efficient
chiral auxiliaries to render the process enantioselective.3
In contrast, reports on cycloadditions between azo-
methine ylides and imines are scarce,4 despite the well-
established synthetic potential of the resulting imidazo-
lidines.5 Furthermore, it should be noted that the
asymmetric version of this process remains elusive. In
this paper, we report the first examples of a highly
diastereoselective 1,3-dipolar cycloaddition of azomethine
ylides with chiral sulfinimines to produce enantiopure
N-sulfinyl imidazolidines and the straightforward trans-
formation of one of these cycloadducts into an example
of a novel class of nonsymmetrical vicinal diamines.
Enantiopure sulfinimines, readily available in both
enantiomeric forms,6 are versatile intermediates for
enantioselective syntheses of a variety of targets.7 These
substrates display excellent facial selectivity upon reac-
tion with a number of nucleophiles, and furthermore,
removal or even recycling of the sulfinyl auxiliary is
readily carried out under mild reaction conditions.8
These desirable features, along with our interest in the
development of sulfur-directed methodology,9 attracted
our attention to these intermediates as potential precur-
sors to chiral imidazolidines by 1,3-dipolar cycloadditions
with azomethine ylides.
We selected sulfinimine 16a and N-benzylidene R-amino
acid ester-derived ylide 310 for our initial studies. Stan-
dard conditions (LiBr, Et3N, MeCN; AgOAc, DBU, Tol)
failed to promote the desired cycloaddition. Dipole
generation with LDA10 was then examined, and to our
delight, the reaction between sulfinimine 1 and phenyl-
alanine-derived dipole 3 led to a fair yield of a 95:5
mixture of cycloadducts 6 and 711 (Scheme 1), along with
15-20% of unreacted starting material. From this
mixture of 6 and 7, pure 6 (45-50%) was obtained by
recrystallization (hexane:ether). The reaction between
1 and dipole 4 produced imidazolidines 8 and 9 in almost
identical yield and selectivity to the case above. Simi-
larly, the more reactive substrate 212 afforded excellent
yields of adducts 10 and 12 as practically single isomers
upon reaction with dipoles 3 and 5, respectively.
* To whom correspondence should be addressed. Phone: 34-(1)-562-
2900 ext 210. Fax: 34-(1)-564-4853. E-mail: RIF@CC.CSIC.ES.
† Taken in part from the M.S. Theses of C.G.-S. and M.A.
‡ Dedicated to the late Dr. Mar´ıa Victoria Mart´ın (I. Q. O., CSIC).
§ Universidad Complutense.
The general structure of these adducts was readily
derived from their spectral features, and the relative
stereochemistry of the three ring chiral centers was
deduced from differential NOE experiments. However,
Instituto de Qu´ımica Orga´nica.
| Instituto de Qu´ımica-F´ısica Rocasolano.
(1) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley:
New York, 1984.
(2) For a review, see: Tsuge, O.; Kanemasa, S. Adv. Heterocycl.
Chem. 1989, 45, 231-349.
(3) For leading references, see: (a) Galley, G.; Liebscher, J .; Pa¨tzel,
M. J . Org. Chem. 1995, 60, 5005-5010. (b) Waldmann, H.; Bla¨ser, E.;
J ansen, M.; Letschert, H.-P. Chem. Eur. J . 1995, 1, 150-154. (c) Grigg,
R. Tetrahedron: Asymmetry 1995, 6, 2475-2486.
(7) For leading references, see: (a) Davis, F. A.; Szewczyk, J . M.;
Reddy, R. E. J . Org. Chem. 1996, 61, 2222-2225. (b) Davis, F. A.;
Portonovo, P. S.; Reddy, R. E.; Chiu, Y. Ibid. 1996, 61, 440-441. (c)
Hose, D. R. J .; Mahon, M. F.; Molloy, K. C.; Raynham, T.; Wills, M. J .
Chem. Soc., Perkin Trans. 1 1996, 691-703. (d) Garc´ıa Ruano, J . L.;
Ferna´ndez, I.; del Prado Catalina, M.; Alcudia Cruz, A. Tetrahedron:
Asymmetry 1996, 7, 3407-3414. (e) Fujisawa, T.; Kooriyama, Y.;
Shimizu, M. Tetrahedron Lett. 1996, 37, 3881-3884. (f) Balasubra-
manian, T.; Hassner, A. Ibid. 1996, 37, 5755-5758.
(8) Davis, F. A.; Reddy, R. E.; Szewczyk, J . M. J . Org. Chem. 1995,
60, 7037-7039.
(9) (a) Marino, J . P.; Viso, A.; Ferna´ndez de la Pradilla, R.;
Ferna´ndez, P. J . Org. Chem. 1991, 56, 1349-1351. (b) Arjona, O.;
Ferna´ndez de la Pradilla, R.; Mallo, A.; Plumet, J .; Viso, A. Tetrahedron
Lett. 1990, 31, 1475-1478. (c) Ferna´ndez de la Pradilla, R.; Castro,
S.; Manzano, P.; Priego, J .; Viso, A. J . Org. Chem. 1996, 61, 3586-
3587.
(10) Kanemasa, S.; Hayashi, T.; Tanaka, J .; Yamamoto, H.; Sakurai,
T. J . Org. Chem. 1991, 56, 4473-4481 and previous papers from this
group.
(11) All new products were fully characterized by standard tech-
niques.
(12) Sulfinimine 2 was prepared in one step from p-nitrobenzalde-
hyde by the procedure of Davis (ref 6a).
(4) (a) Lown, J . W. In ref 1, Vol. 1, pp 653-732. (b) Bende, Z.; Bitter,
I.; Toke, L.; Weber, L.;. Toth, G.; J anke, F. Liebigs. Ann. Chem. 1982,
2146-2152. (c) Grigg, R.; Donegan, G.; Gunaratne, H. Q. N.; Kennedy,
D. A.; Malone, J . F.; Sridharan, V.; Thianpatanagul, S. Tetrahedron
1989, 45, 1723-1746. (d) Amornraksa, K.; Barr, D.; Donegan, G.; Grigg,
R.; Ratananukul, P.; Sridharan, V. Ibid. 1989, 45, 4649-4668. (e)
Lerestif, J . M.; Bazureau, J . P.; Hamelin, J . Tetrahedron Lett. 1993,
29, 4639-4642. (f) Padwa, A.; Dean, D. C.; Osterhout, H.; Precedo, L.;
Semones, M. A. J . Org. Chem. 1994, 59, 5347-5357. (g) Nagao, Y.;
Kim, K.; Komaki, Y.; Sano, S.; Kihara, M.; Shiro, M. Heterocycles 1994,
38, 587-593.
(5) For leading references, see: (a) Alexakis, A.; Lensen, N.; Tran-
chier, J .-P.; Mangeney, P.; Feneu-Dupont, J .; Declercq, J .-P. Synthesis
1995, 1038-1050. (b) Alexakis, A.; Tranchier, J .-P.; Lensen, N.;
Mangeney, P. J . Am. Chem. Soc. 1995, 117, 10767-10768.
(6) For leading references, see: (a) Davis, F. A.; Reddy, R. E.;
Szewczyk, J . M.; Portonovo, P. S. Tetrahedron Lett. 1993, 34, 6229-
6232. (b) Yang, T.-K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; J iang, Y.-
Z.; Mi, A.-Q.; J ong, T.-T. J . Org. Chem. 1994, 59, 914-921 and
references cited therein.
S0022-3263(97)00005-4 CCC: $14.00 © 1997 American Chemical Society