S. D. Dong et al. / Tetrahedron Letters 45 (2004) 1945–1947
Table 1. Metathesis conditions and outcomes
1947
Compound
(X,Y)
R
R0
Substrate
concentration
(mM)
Catalyst
Solvent
Temperature Time
Yield (%)
E=Z
1
–H
1
6 (20 mol %)
6 (20 mol %)
CH2Cl2
CH2Cl2
Reflux
6 h
59
1:1
7
8
–H
2.9
2
Reflux
Reflux
8 h
60
35
1:1
–Me
6 (129 mol %) Toluene
5 days
1:1.3
Table 2. Cytotoxicity of epothilone analogs (IC50 nM)
4. Nicolaou, K. C.; Ritzen, A.; Namoto, K. Chem. Commun.
2001, 1523–1535.
Compound
MCF-7
NCI/ADR
A549
5. Julien, B.; Shah, S. Antimicrob. Agents Chemother. 2002,
46, 2772–2778.
6. Vedejs, E.; Kruger, A. W. J. Org. Chem. 1999, 64, 4790–
4797.
7. Payack, J. F.; Hughes, D. L.; Cai, D.; Cottrell, I. F.;
Verhoeven, T. R. Dimethyltitanocene. In Org. Syntheses;
Hegedus, L. S., Ed.; Wiley: New York, 2002; Vol. 79, pp
19–26.
1Z
1E
7Z
7E
8Z
8E
17
200
36
58
440
27
290
49
140
350
47
ꢀ1300
280
320
400
79
62
160
8. Meng, D.; Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka,
T.; Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem. Soc.
1997, 119, 10073–10092.
9. May, S. A.; Grieco, P. A. Chem. Commun. 1998, 1597–
1598.
the Z isomers are consistently more potent than the E
isomer.3
10. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956.
11. Altmann, K. H.; Bold, G.; Caravatti, G.; Florsheimer, A.;
Guagnano, V.; Wartmann, M. Bioorg. Med. Chem. Lett.
2000, 10, 2765–2768.
In conclusion, we have developed a facile and efficient
route to epothilone analogs via a degradation approach
to epothilone D (1). Acid intermediate 4 can be pro-
duced rapidly in six steps from 1. Employing ring-clos-
ing metathesis with Grubbs second-generation
ruthenium catalyst to reconstruct the trisubstituted-
12,13-double bond, we have prepared a variety of ste-
rically differentiated epothilone analogs. The outcome of
the metathesis is dependent on the nature of the sub-
stitution at the allylic position. Using this approach, we
now have ready access to numerous epothilone analogs
with varying C-15 aromatic side chains and C-14 allylic
substitutions. Furthermore, this strategy highlights the
power of degradation and semisynthesis when natural
products are available as building blocks.16
12. Taylor, R. E.; Chen, Y.; Beatty, A.; Myles, D. C.; Zhou,
Y. J. Am. Chem. Soc. 2003, 125, 26–27.
13. Nicolaou, K. C.; Ninkovic, S.; Sarabia, F.; Vourloumis,
D.; He, Y.; Vallberg, H.; Finlay, M. R. V.; Yang, Z.
J. Am. Chem. Soc. 1997, 119, 7974–7991.
14. B was prepared from 2-methylbenzoxazole-5-carbalde-
hyde in an analogous fashion to A.
1
15. 7E: H NMR (CDCl3, 400 MHz) d 1.00 (m, 2H), 1.04 (s,
3H), 1.17 (d, 3H, J ¼ 6:2 Hz), 1.28 (m, 6H), 1.62 (s, 5H),
1.73 (br, 1H), 1.99 (m, 1H), 2.15 (m, 1H), 2.46 (m, 2H),
2.64 (s, 5H), 3.27 (m, 1H), 3.68 (br, 1H), 4.27 (d, 1H,
J ¼ 9:2 Hz), 5.13 (br s, 1H), 6.03 (br s, 1H), 7.27 (d, 1H,
J ¼ 8:4 Hz), 7.44 (d, 1H, J ¼ 8:0 Hz), 7.69 (s, 1H); 13C
NMR (400 MHz, CDCl3) d 14.40, 14.50, 15.65, 15.95,
20.00, 20.57, 29.64, 31.61, 35.00, 37.76, 38.95, 39.44, 42.52,
52.76, 72.10, 75.71, 75.91, 110.15, 116.87, 119.66, 122.77,
136.57, 138.74, 150.46, 164.70, 170.40, 220.29; HRMS
calcd for C28H39NO6: 485.27774; found: 486.28648
(M+H).
8E: 1H NMR (CDCl3, 400 MHz) d 1.00–0.90 (m, 8H), 1.07
(s, 3H), 1.16 (m, 4H), 1.27 (s, 3H), 1.61 (s, 3H), 1.76 (m,
2H), 2.04 (s, 2H), 2.09 (s, 3H), 2.55–2.40 (m, 2H), 2.70 (s,
3H), 2.83 (m, 1H), 3.15 (m, 1H), 3.72 (s, 1H), 4.11 (m, 1H),
4.95 (d, 1H, J ¼ 8:40 Hz),), 5.02 (d, 1H, J ¼ 8:0 Hz), 6.55
(s, 1H), 6.97 (s, 1H); 13C NMR (CDCl3, 400 MHz) d 13.92,
14.98, 16.14, 17.81, 19.06, 21.33, 24.91, 31.68, 34.94, 38.19,
38.53, 39.03, 42.45, 52.75, 72.24, 75.04, 84.43, 116.36,
122.56, 127.34, 136.12, 170.72, 220.18; HRMS calcd for
C28H43NO5S: 505.2862; found: 506.29418 (M+H).
Acknowledgements
We would like to thank John Carney, Nina Viswana-
than, and Chau Q. Tran for analytical support.
References and notes
1. He, L.; Orr, G. A.; Horwitz, S. B. Drug Discovery Today
2001, 6, 1153–1164.
2. For more information about clinical trials of epothilone
3. Harris, C. R.; Danishefsky, S. J. J. Org. Chem. 1999, 64,
8434–8760.
16. Niggemann, J.; Michaelis, K.; Frank, R.; Zander, N.;
€
Hofle, G. J. Chem. Soc., Perkin Trans. 1 2002, 2490–2503.