2588 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 13
Sohn et al.
(8) Herna´ndez, S.; Bessa, X.; Hernandez, L.; Nadal, A.; Mallofre´,
C.; Muntane, J .; Castells, A.; Fernandez, P. L.; Cardesa, A.;
Campo, E. Differential expression of cdc25 cell-cycle-activating
phosphatases in human colorectal carcinoma. Lab. Invest. 2001,
81, 465-473.
(9) Wu, W. G.; Fan, Y. H.; Kemp, B. L.; Walsh, G.; Mao, L. Over-
expression of cdc25A and cdc25B is frequent in primary nonsmall
cell lung cancer but is not associated with overexpression of
c-myc. Cancer Res. 1998, 58, 4082-4085.
(10) Herna´ndez, S.; Herna´ndez, L.; Bea, S.; Pinyol, M.; Nayach, I.;
Bellosillo, B.; Nadal, A.; Ferrer, A.; Fernandez, P. L.; Montserrat,
E.; Cardesa, A.; Cardes, E.; Campo, E. cdc25A and the splicing
variant cdc25B2, but not cdc25B1, -B3 or -C, are overexpressed
in aggressive human non-Hodgkin’s lymphomas. Int. J . Cancer
2000, 89, 148-152.
(11) Ma, Z.-Q.; Chua, S. S.; DeMayo, F. J .; Tsai, S. Y. Induction of
mammary gland hyperplasia in transgenic mice overexpressing
human Cdc25B. Oncogene 1999, 18, 4564-4576.
(12) Yao, Y.; Slosberg, E. D.; Wang, L.; Hibshoosh, H.; Zhang, Y.-J .;
Xing, W.-Q.; Santella, R. M.; Weinstein, I. B. Increased suscep-
tibility to carcinogen-induced mammary tumors in MMTV-
Cdc25B transgenic mice. Oncogene 1999, 18, 5159-5166.
(13) Wu, F. Y.-H.; Sun, T. P. Vitamin K3 induces cell cycle arrest
and cell death by inhibiting cdc25 phosphatase. Eur. J . Cancer
1999, 35, 1388-1393.
(14) Tamura, K.; Rice, R. L.; Wipf, P.; Lazo, J . S. Dual G1 and G2/M
phase inhibition by SC-9, a combinatorially derived Cdc25
phosphatase inhibitor. Oncogene 1999, 18, 6989-6996.
(15) Tamura, K.; Southwick, E. C.; Kerns, J .; Rosi, K.; Carr, B. I.;
Wilcox, C.; Lazo, J . S. Cdc25 inhibition and cell cycle arrest by
a synthetic thioalkyl vitamin K analogue. Cancer Res. 2000, 60,
1317-1325.
(16) Takahashi, M.; Dodo, K.; Sugimoto, Y.; Aoyagi, Y.; Yamada, Y.;
Hashimoto, Y.; Shirai, R. Synthesis of the novel analogues of
dysidiolide and their structure-activity relationship. Bioorg.
Med. Chem. Lett. 2000, 10, 2571-2574.
(17) Peng, H.; Zalkow, L. H.; Abraham, R. T.; Powis, G. Novel Cdc25A
phosphatase inhibitors from pyrolysis of 3-alpha-azido-B-homo-
6-oxa-4-cholesten-7-one on silica gel. J . Med. Chem. 1998, 41,
4677-4680.
(18) Carnero, A. Targeting the cell cycle for cancer therapy. Br. J .
Cancer 2002, 87, 129-133.
(19) Lyon, M. A.; Ducruet, A. P.; Wipf, P.; Lazo, J . S. Dual-specificity
phosphatases as targets for antineoplastic agents. Nat. Rev.
Drug Discovery 2002, 1, 961-976.
(20) Gunasekera, S. P.; McCarthy, P. J .; Kelly-Broger, M.; Lobkovsky,
E.; Clardy, J . Dysidiolide: A novel protein phosphatase inhibitor
from Caribbean Spongs Diysidea ehterria de Laubenfels. J . Am.
Chem. Soc. 1996, 118, 8759-8760.
(21) Blanchard, J . L.; Epstein, D. M.; Boisclair, M. D.; Rudolph, J .;
Pal, K. Dysidiolide and Related γ-Hydroxy Butenolide Com-
pounds as Inhibitors of the Protein Tyrosine Phosphatase,
Cdc25. Bioorg., Med. Chem. Lett. 1999, 9, 2537-2538.
(22) Cebula, R. E.; Blanchard, J . L.; Boisclair, M. D.; Mansuri, M.
M.; Pal, K.; Bockovich, N. J . Synthesis and phosphatase activity
of analogues of sulfiricin. Bioorg. Med. Chem. Lett. 1997, 7,
2015-2020.
(29) Pu, L.; Amoscato, A. A.; Bier, M. E.; Lazo, J . S. Dual G1 and G2
Phase Inhibition by a Novel, Selective Cdc25 Inhibitor 7-Chloro-
6-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J . Biol. Chem.
2002, 277, 46877-46885.
(30) Rudolph, J . The Catalytic Mechanism of Cdc25. Biochem. 2002,
41, 14613-14623.
(31) Savitsky, P. A.; Finkel, T. Redox regulation of Cdc25C. J . Biol.
Chem. 2002, 277, 20535-20540.
(32) Fauman, E. B.; Cogswell, J . P.; Lovejoy, B.; Rocque, W. J .;
Holmes, W.; Montana, V. G.; Piwnica-Worms, H.; Rink, M. J .;
Saper, M. A. Crystal structure of the catalytic domain of the
human cell cycle control phosphatase, Cdc25A. Cell 1998, 93,
617-625.
(33) Reynolds, R. A.; Yem, A. W.; Wolfe, C. L.; Deibel, M. R. J .;
Chidester, C. G.; Watenpaugh, K. D. Crystal Structure of the
Catalytic Subunit of Cdc25B Required for G2/M Phase Transi-
tion of the Cell Cycle. J . Mol. Biol. 1999, 293, 559-568.
(34) Rudolph, J .; Epstein, D.; Parker, L.; Eckstein, J . Specificity of
natural and artifical substrates for human Cdc25A. Anal.
Biochem. 2001, 289, 43-51.
(35) Pirrung, M. C.; Deng, L.; Li, Z.; Park, K. Synthesis of 2,5-
dihydroxy-3-(indol-3yl)benzoquinones by acid-catalyzed conden-
sation of indoles with 2, 5 dichlorobenzoquinone. J . Org. Chem.
2002.
(36) Makosza, M.; Bjaleki, M. Nitroarylamines via the Vicarious
Nucleophilic Substitution of Hydrogen: Amination, Alkylami-
nation, and Arylamination of Nitroarenes with Sulfenamides.
J . Org. Chem. 1998, 63, 4878-4888.
(37) Liedholm, B. Copper(I) catalyzed replacement of iodine by
chloride ion in halonitrobenzenes. Acta Chem. Scand. 1971, 25,
113-117.
(38) DiFabrio, R.; Alvaro, G.; Bertani, B.; Giacobbe, S. Straightfor-
ward synthesis of new tetrahydroquinoline derivatives. Can. J .
Chem. 2000, 78, 809-815.
(39) Chen, W.; Wilborn, M.; Rudolph, J . Dual-specific Cdc25B phos-
phatase: in search of the catalytic acid. Biochemistry 2000, 39,
10781-10789.
(40) Wilborn, M.; Free, S.; Ban, A.; Rudolph, J . The C-Terminal Tail
of the Dual-Specificity Cdc25B Phosphatase Mediates Modular
Substrate Recognition. Biochemistry 2001, 40, 14200-14206.
(41) Cleland, W. W. Statistical analysis of enzyme kinetic data.
Methods Enzymol. 1979, 63, 103-138.
(42) Heintz, N.; Sive, H. L.; Roeder, R. G. Regulation of human
histone gene expression: kinetics of accumulation and changes
in the rate of synthesis and in the half-lives of individual histone
mRNAs during the HeLa cell cycle. Mol. Cell. Biol. 1983, 3, 539-
550.
(43) Preusch, P. C.; siegel, D.; Gibson, N. W.; Ross, D. A note on the
inhibition of DT-diaphorase by dicoumarol. Free Radicals Biol.,
Med. 1991, 11, 77-80.
(44) Gottlin, E.; Epstein, D. M.; Eckstein, J .; Dixon, J . Kinetic
analysis of the catalytic domain of human Cdc25B. J . Biol. Chem.
1996, 272, 27445-27449.
(45) Gant, T. W.; Rao, D. N.; Mason, R. P.; Cohen, G. M. Redox cycling
and sulphydryl arylation; their relative importance in the
mechanism of quinone cytotoxicity to isolated hepatocytes. Chem.
Biol. Interact. 1988, 65, 157-173.
(46) J affar, M.; Naylor, M. A.; Robertson, N.; Stratford, I. J . Targeting
hypoxia with a new generation of indolequinones. Anticancer
Drug Des. 1988, 13, 593-609.
(47) Finley, K. T. The addition and substitution chemistry of quinones;
Patai, S., Ed.; J ohn Wiley: London, 1974; p 878.
(48) Liu, K.; Xu, L.; Szalkowski, D.; Li, Z.; Ding, V.; Kwei, G.; Huskey,
S.; Moller, D. E.; Heck, J . V.; Zhang, B. B.; J ones, A. B. Discovery
of a potent, highly selective, and orally efficacious small-molecule
activator of the insulin receptor. J . Med. Chem. 2000, 43, 3487-
3494.
(49) Szabo´, Z.; Kova´cs, A. Hydrogen bonding and molecular vibrations
of 2,5-dihydroxy-1,4-benzoquinone. J . Mol. Struct. 1999, 510,
215-225.
(23) J uan, C. C.; Wu, F. Y. Vitamin K3 inhibits growth of human
hepatoma HepG2 cells by decreasing activities of both p34cdc2
kinase and phosphatase. Biochem. Biophys. Res. Comm. 1993,
190, 907-913.
(24) Rice, R. L.; Rusnak, J . M.; Yokokawa, F.; Messner, D. J .;
Boynton, A. L.; Wipf, P.; Lazo, J . S. A targeted library of small-
molecule, tyrosine, and dual-specificity phosphatase inhibitors
derived from a rational core design and random side chain
variations. Biochem. 1997, 36, 15965-15974.
(25) Bergnes, G.; Gilliam, C. L.; Boisclair, M. D.; Blanchard, J . L.;
Blake, K. V.; Epstein, D. M.; Pal, K. Generation of an Ugi library
of phosphate mimic-containing compounds and identification of
novel dual specificity phosphatase inhibitors. Bioorg. Med. Chem.
Lett. 1999, 9, 2849-2854.
(26) Peng, H.; Xie, W.; Otterness, D. M.; Cogswell, J . P.; McConnel,
R. T.; Carter, H. L.; Powis, G.; Abraham, R. T.; Zalkow, L. H.
Syntheses and biological activities of a novel group of steroidal
derived inhibitors for human Cdc25A protein phosphatase. J .
Med. Chem. 2001, 44, 834-848.
(50) Hill, A. V. The possible effects of the aggregation of the molecules
of haemoglobin on its biochemical and other systems. J . Physiol.
(London) 1910, 40, iv-vii.
(51) Adair, G. S. The hemoglobin system. VI. The oxygen dissociation
curve of hemoglobin. Chemistry 1925, 63, 529-545.
(52) McGovern, S. L.; Caselli, E.; Grigorieff, N.; Shoichet, B. K. A
Common Mechanism Underlying Promiscuous Inhibitors from
Virtual and High-Throughput Screening. J . Med. Chem. 2002,
1712-1722.
(27) Lazo, J . S.; Aslan, D. C.; Southwick, E. C.; Cooley, K. A.; Ducruet,
A. P.; J oo, B.; Vogt, A.; Wipf, P. Discovery and biological
evaluation of a new family of potent inhibitors of the dual
specificity protein phosphatase Cdc25. J . Med. Chem. 2001, 44,
4042-4049.
(28) Lazo, J . S.; Nemoto, K.; Pestell, K. E.; Cooley, K.; Southwick, E.
C.; Mitchell, D. A.; Furey, W.; Gussio, R.; Zaharevitz, D. W.; J oo,
B.; Wipf, P. Identification of a potent and selective pharmacoph-
ore for Cdc25 dual specificity phosphatase inhibitors. Mol.
Pharmacol. 2002, 61, 720-728.
(53) Chapman, R. G.; Ostuni, E.; takayama, S.; Holmlin, R. E.; Yan,
L.; Whitesides, G. M. Surveying the surfaces that resist adsorp-
tion of proteins. J . Am. Chem. Soc. 2000, 122, 8303-8304.
J M0300835