ORGANIC
LETTERS
2009
Vol. 11, No. 15
3398-3401
Intramolecular Pyridine
Activation-Dearomatization Reaction:
Highly Stereoselective Synthesis of
Polysubstituted Indolizidines and
Quinolizidines
Guillaume Barbe, Guillaume Pelletier, and Andre´ B. Charette*
De´partement de chimie, UniVersite´ de Montre´al, P.O. Box 6128, Station Downtown,
Montre´al, Que´bec, Canada H3C 3J7
Received June 5, 2009
ABSTRACT
An unprecedented intramolecular pyridine activation-asymmetric dearomatization reaction is described. This process produces 5-substituted
indolizidines and 6-substituted quinolizidines in excellent yields and in a highly regio- and diastereoselective fashion. Formal syntheses of
trans-indolizidine alkaloids are presented along with some preliminary results in the formation of C-5 quaternary centers.
Extracts from the skin of amphibians provide a large array
of structurally unique1 and pharmacologically active alka-
loids.2 Particularly, indolizidine and quinolizidine alkaloids
represent privileged motifs, and accordingly, their chemical
syntheses have benefited from a worldwide interest.3
Despite immense efforts, a more general and expedient
approach to synthetically flexible polysubstituted indoliz-
idines and quinolizidines remains highly desirable.4 Herein,
we report on the stereoselective synthesis of 5(6)-substituted
indolizidines (quinolizidines) through an unprecedented
intramolecular pyridine activation-asymmetric dearomati-
zation reaction.
Over the past decades, pyridine dearomatization has
emerged as an attractive and cost-effective approach to the
asymmetric synthesis of polysubstituted piperidines.5,6 Rec-
ognizing the unique directing ability of nitrogen-containing
(5) For chiral auxiliary-based strategies, see: (a) Mehmandoust, M.;
Marazano, C.; Das, B. C. J. Chem. Soc., Chem. Commun. 1989, 1185. (b)
Comins, D. L.; Goehring, R. R.; Sajan, J. P.; O’Connor, S. J. Org. Chem.
1990, 55, 2574. (c) Comins, D. L.; Hong, H. J. Am. Chem. Soc. 1991, 113,
6672. (d) Sreith, J.; Boiron, A.; Sifferlen, T.; Strehler, C.; Tschamber, T.
Tetrahedron Lett. 1994, 35, 3927. (e) Comins, D. L.; Josef, S. P.; Goehring,
R. R. J. Am. Chem. Soc. 1994, 116, 4719. (f) Charette, A. B.; Grenon, M.;
Lemire, A.; Pourashraf, M.; Martel, J. J. Am. Chem. Soc. 2001, 123, 11829.
(g) Hoesl, C. E.; Pabel, J.; Polborn, K.; Wanner, K. T. Heterocycles 2002,
58, 383. (h) Legault, C.; Charette, A. B. J. Am. Chem. Soc. 2003, 125,
(1) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68,
1556.
(2) For a review of the biological significance of indolizidine alkaloids,
see: Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical
and Biological PerspectiVes; Pelletier, S. W., Ed.; Pergamon: New York,
1999; Vol. 13, pp 1-161.
6360. (i) Comins, D. L.; Sahn, J. J. Org. Lett. 2005, 7, 5227
.
(3) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. and other reviews in
these series.
(6) For catalysis-based strategies, see: (a) Ichikawa, E.; Suzuki, M.;
Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 11808. (b) Legault, C.; Charette, A. B. J. Am. Chem. Soc. 2005, 127,
8966. (c) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129,
9300. (d) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2007,
46, 4562. (e) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. J. Org. Chem.
(4) For recent approaches, see: (a) Yu, R. T.; Lee, E. E.; Malik, G.;
Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2379. (b) Liu, P.; Hong, S.;
Weinreb, S. M. J. Am. Chem. Soc. 2008, 130, 7562. (c) Yu, R. T.; Rovis,
T. J. Am. Chem. Soc. 2006, 128, 12370. (d) Turunen, B. J.; Georg, G. I.
J. Am. Chem. Soc. 2006, 128, 8702.
2008, 73, 1906
.
10.1021/ol901264f CCC: $40.75
Published on Web 07/10/2009
2009 American Chemical Society